This is the origin TensorFlow implementation for Bag of tricks for long-tail visual recognition of animal species in camera-trap images
Prepare an environment with python=3.9, tensorflow=2.5.0
Dependencies can be installed using the following command:
pip install -r requirements.txt
Caltech Camera Traps, Snapshot Serengeti, WCS Camera Traps, and Wellington Camera Traps datasets can be downloaded from Lila.
We used the recommended Lila train/val/test partitions for splits based on locations (site). When the test split was not available, the validation set was used as the test set, and a minival set was held out from the training set. The used partitions are available in the data
folder.
As not all images were used from these datasets, we provide the lists of used images for each dataset here.
We also provide scripts for resizing images and converting the dataset to tfrecords format. See the dataset_tools
folder.
To train a classifier, use the script train.py
:
python train.py --model_name=efficientnetv2-b2 \
--input_size=260 \
--input_scale_mode=tf \
--batch_size=64 \
--epochs=30 \
--optimizer=adamw \
--lr=1e-5 \
--weight_decay=1e-7 \
--use_cosine_decay \
--warmup_epochs=2.0 \
--loss_fn=sce \
--ra_num_layers=2 \
--ra_magnitude=9 \
--train_json=PATH_TO_BE_CONFIGURED/caltech_images_20211210ufam_train.json \
--val_json=PATH_TO_BE_CONFIGURED/caltech_images_20211210ufam_minival.json \
--dataset_dir=PATH_TO_BE_CONFIGURED/ \
--random_seed=42
The parameters can also be passed using a config file:
python train.py --flagfile=configs/efficientnetv2-b2_caltech_representation.config \
--model_dir=PATH_TO_BE_CONFIGURED
For more parameter information, please refer to train.py
. See the configs
folder for some training config examples.
The train.py
script is also used to train two-stage methods:
- Train the first stage by passing the appropriate options to the
train.py
script (e.g.,configs/efficientnetv2-b2_caltech_representation.config
). - Use the script
save_base_model.py
to extract the backbone weights (base model) without the classifier. - Train the second stage using
train.py
with the appropriate options and pass the backbone weights using the option--base_model_weights
(e.g.,configs/efficientnetv2-b2_caltech_crt.config
).
SSB is trained in a two-stage fashion:
- Use the
train.py
script to train a model with the option--sampling_strategy
set toinstance
and--freeze_base_model
set toFalse
. - Save the backbone weights using the
save_base_model.py
script. - Train the second stage using the backbone weights from the first stage frozen and the Square-Root resampling strategy:
--sampling_strategy=sqrt --freeze_base_model=True --base_model_weights=PATH_TO_BE_CONFIGURED
.
To evaluate a classifier, use the script eval.py
:
python eval.py --model_name=efficientnetv2-b2 \
--input_size=260 \
--num_classes=19 \
--model_weights=PATH_TO_BE_CONFIGURED/effv2b2_caltech_bboxrepre_10fev/ckp \
--input_scale_mode=tf \
--train_json=PATH_TO_BE_CONFIGURED/caltech_images_20211210ufam_train.json \
--test_json=PATH_TO_BE_CONFIGURED/caltech_images_20211210ufam_val.json \
--dataset_dir=PATH_TO_BE_CONFIGURED/ \
--results_file=PATH_TO_BE_CONFIGURED/effv2b2_caltech_bboxrepre_10fev_val_results.json
To evaluate SSB, use the option --model_weights
to pass the weights for the first stage and --sqrt_model_weights
for the second stage weights (using square-root re-sampling).
All model checkpoints are available here.
If you find this code useful in your research, please consider citing:
@article{cunha2023bag,
title={Bag of tricks for long-tail visual recognition of animal species in camera-trap images},
author={Cunha, Fagner and dos Santos, Eulanda M and Colonna, Juan G},
journal={Ecological Informatics},
volume={76},
pages={102060},
year={2023},
publisher={Elsevier}
}
If you have any questions, feel free to contact Fagner Cunha (e-mail: [email protected]) or Github issues.