Skip to content

Commit

Permalink
Merge pull request rapidsai#536 from raydouglass/update-dockerhub
Browse files Browse the repository at this point in the history
Update dockerhub-readme for Ubuntu 22.04
  • Loading branch information
raydouglass authored Mar 15, 2023
2 parents 6c81e8b + 4d70971 commit df87703
Show file tree
Hide file tree
Showing 14 changed files with 158 additions and 157 deletions.
22 changes: 11 additions & 11 deletions dockerhub-readme/generated-readmes/ngc-rapidsai-core-dev.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ This repo (rapidsai/rapidsai-core-dev), contains the following:

The tag naming scheme for RAPIDS images incorporates key platform details into the tag as shown below:
```
23.02-cuda11.8-devel-ubuntu18.04-py3.10
23.02-cuda11.8-devel-ubuntu22.04-py3.10
^ ^ ^ ^ ^
| | type | python version
| | |
Expand All @@ -52,8 +52,8 @@ The tag naming scheme for RAPIDS images incorporates key platform details into t
## Prerequisites

- NVIDIA Pascal™ GPU architecture or better
- CUDA [11.2/11.4/11.5](https://developer.nvidia.com/cuda-downloads) with a compatible NVIDIA driver
- Ubuntu 18.04/20.04 or CentOS 7 or Rocky Linux 8
- CUDA [11.2/11.4/11.5/11.8](https://developer.nvidia.com/cuda-downloads) with a compatible NVIDIA driver
- Ubuntu 20.04/22.04 or CentOS 7 or Rocky Linux 8
- Docker CE v18+
- [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker)

Expand All @@ -63,16 +63,16 @@ The tag naming scheme for RAPIDS images incorporates key platform details into t

#### Preferred - Docker CE v19+ and `nvidia-container-toolkit`
```bash
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
$ docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

#### Legacy - Docker CE v18 and `nvidia-docker2`
```bash
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
$ docker run --runtime=nvidia --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

### Container Ports
Expand Down Expand Up @@ -111,7 +111,7 @@ $ docker run \
-p 8888:8888 \
-p 8787:8787 \
-p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

### Bind Mounts
Expand All @@ -134,7 +134,7 @@ $ docker run \
-it \
--gpus all \
-v $(pwd)/environment.yml:/opt/rapids/environment.yml \
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

### Use JupyterLab to Explore the Notebooks
Expand Down Expand Up @@ -162,14 +162,14 @@ You are free to modify the above steps. For example, you can launch an interacti
```bash
$ docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
-v /path/to/host/data:/rapids/my_data \
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

#### Legacy - Docker CE v18 and `nvidia-docker2`
```bash
$ docker run --runtime=nvidia --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
-v /path/to/host/data:/rapids/my_data \
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```
This will map data from your host operating system to the container OS in the `/rapids/my_data` directory. You may need to modify the provided notebooks for the new data paths.

Expand Down
26 changes: 13 additions & 13 deletions dockerhub-readme/generated-readmes/ngc-rapidsai-core.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ The [rapidsai/rapidsai-core-dev](https://catalog.ngc.nvidia.com/orgs/nvidia/team

The tag naming scheme for RAPIDS images incorporates key platform details into the tag as shown below:
```
23.02-cuda11.8-runtime-ubuntu18.04-py3.10
23.02-cuda11.8-runtime-ubuntu22.04-py3.10
^ ^ ^ ^ ^
| | type | python version
| | |
Expand All @@ -50,16 +50,16 @@ The tag naming scheme for RAPIDS images incorporates key platform details into t

To get the latest RAPIDS version of a specific platform combination, simply exclude the RAPIDS version. For example, to pull the latest version of RAPIDS for the `runtime` image with support for CUDA 11.8, Python 3.10, and Ubuntu 18.04, use the following tag:
```
cuda11.8-runtime-ubuntu18.04
cuda11.8-runtime-ubuntu22.04
```

Many users do not need a specific platform combination but would like to ensure they're getting the latest version of RAPIDS, so as an additional convenience, a tag named simply `latest` is also provided which is equivalent to `cuda11.8-runtime-ubuntu18.04-py3.10`.
Many users do not need a specific platform combination but would like to ensure they're getting the latest version of RAPIDS, so as an additional convenience, a tag named simply `latest` is also provided which is equivalent to `cuda11.8-runtime-ubuntu22.04-py3.10`.

## Prerequisites

- NVIDIA Pascal™ GPU architecture or better
- CUDA [11.2/11.4/11.5](https://developer.nvidia.com/cuda-downloads) with a compatible NVIDIA driver
- Ubuntu 18.04/20.04 or CentOS 7 or Rocky Linux 8
- CUDA [11.2/11.4/11.5/11.8](https://developer.nvidia.com/cuda-downloads) with a compatible NVIDIA driver
- Ubuntu 20.04/22.04 or CentOS 7 or Rocky Linux 8
- Docker CE v18+
- [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker)

Expand All @@ -69,16 +69,16 @@ Many users do not need a specific platform combination but would like to ensure

#### Preferred - Docker CE v19+ and `nvidia-container-toolkit`
```bash
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
$ docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

#### Legacy - Docker CE v18 and `nvidia-docker2`
```bash
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
$ docker run --runtime=nvidia --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

### Container Ports
Expand Down Expand Up @@ -117,7 +117,7 @@ $ docker run \
-p 8888:8888 \
-p 8787:8787 \
-p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

### Bind Mounts
Expand All @@ -140,7 +140,7 @@ $ docker run \
-it \
--gpus all \
-v $(pwd)/environment.yml:/opt/rapids/environment.yml \
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

### Use JupyterLab to Explore the Notebooks
Expand Down Expand Up @@ -168,14 +168,14 @@ You are free to modify the above steps. For example, you can launch an interacti
```bash
$ docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
-v /path/to/host/data:/rapids/my_data \
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

#### Legacy - Docker CE v18 and `nvidia-docker2`
```bash
$ docker run --runtime=nvidia --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
-v /path/to/host/data:/rapids/my_data \
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-core:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```
This will map data from your host operating system to the container OS in the `/rapids/my_data` directory. You may need to modify the provided notebooks for the new data paths.

Expand Down
22 changes: 11 additions & 11 deletions dockerhub-readme/generated-readmes/ngc-rapidsai-dev.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ This repo (rapidsai/rapidsai-dev), contains the following:

The tag naming scheme for RAPIDS images incorporates key platform details into the tag as shown below:
```
23.02-cuda11.8-devel-ubuntu18.04-py3.10
23.02-cuda11.8-devel-ubuntu22.04-py3.10
^ ^ ^ ^ ^
| | type | python version
| | |
Expand All @@ -52,8 +52,8 @@ The tag naming scheme for RAPIDS images incorporates key platform details into t
## Prerequisites

- NVIDIA Pascal™ GPU architecture or better
- CUDA [11.2/11.4/11.5](https://developer.nvidia.com/cuda-downloads) with a compatible NVIDIA driver
- Ubuntu 18.04/20.04 or CentOS 7 or Rocky Linux 8
- CUDA [11.2/11.4/11.5/11.8](https://developer.nvidia.com/cuda-downloads) with a compatible NVIDIA driver
- Ubuntu 20.04/22.04 or CentOS 7 or Rocky Linux 8
- Docker CE v18+
- [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker)

Expand All @@ -63,16 +63,16 @@ The tag naming scheme for RAPIDS images incorporates key platform details into t

#### Preferred - Docker CE v19+ and `nvidia-container-toolkit`
```bash
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
$ docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

#### Legacy - Docker CE v18 and `nvidia-docker2`
```bash
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
$ docker run --runtime=nvidia --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

### Container Ports
Expand Down Expand Up @@ -111,7 +111,7 @@ $ docker run \
-p 8888:8888 \
-p 8787:8787 \
-p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

### Bind Mounts
Expand All @@ -134,7 +134,7 @@ $ docker run \
-it \
--gpus all \
-v $(pwd)/environment.yml:/opt/rapids/environment.yml \
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

### Use JupyterLab to Explore the Notebooks
Expand Down Expand Up @@ -162,14 +162,14 @@ You are free to modify the above steps. For example, you can launch an interacti
```bash
$ docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
-v /path/to/host/data:/rapids/my_data \
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```

#### Legacy - Docker CE v18 and `nvidia-docker2`
```bash
$ docker run --runtime=nvidia --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
-v /path/to/host/data:/rapids/my_data \
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai-dev:23.02-cuda11.8-devel-ubuntu22.04-py3.10
```
This will map data from your host operating system to the container OS in the `/rapids/my_data` directory. You may need to modify the provided notebooks for the new data paths.

Expand Down
26 changes: 13 additions & 13 deletions dockerhub-readme/generated-readmes/ngc-rapidsai.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ The [rapidsai/rapidsai-dev](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/rap

The tag naming scheme for RAPIDS images incorporates key platform details into the tag as shown below:
```
23.02-cuda11.8-runtime-ubuntu18.04-py3.10
23.02-cuda11.8-runtime-ubuntu22.04-py3.10
^ ^ ^ ^ ^
| | type | python version
| | |
Expand All @@ -50,16 +50,16 @@ The tag naming scheme for RAPIDS images incorporates key platform details into t

To get the latest RAPIDS version of a specific platform combination, simply exclude the RAPIDS version. For example, to pull the latest version of RAPIDS for the `runtime` image with support for CUDA 11.8, Python 3.10, and Ubuntu 18.04, use the following tag:
```
cuda11.8-runtime-ubuntu18.04
cuda11.8-runtime-ubuntu22.04
```

Many users do not need a specific platform combination but would like to ensure they're getting the latest version of RAPIDS, so as an additional convenience, a tag named simply `latest` is also provided which is equivalent to `cuda11.8-runtime-ubuntu18.04-py3.10`.
Many users do not need a specific platform combination but would like to ensure they're getting the latest version of RAPIDS, so as an additional convenience, a tag named simply `latest` is also provided which is equivalent to `cuda11.8-runtime-ubuntu22.04-py3.10`.

## Prerequisites

- NVIDIA Pascal™ GPU architecture or better
- CUDA [11.2/11.4/11.5](https://developer.nvidia.com/cuda-downloads) with a compatible NVIDIA driver
- Ubuntu 18.04/20.04 or CentOS 7 or Rocky Linux 8
- CUDA [11.2/11.4/11.5/11.8](https://developer.nvidia.com/cuda-downloads) with a compatible NVIDIA driver
- Ubuntu 20.04/22.04 or CentOS 7 or Rocky Linux 8
- Docker CE v18+
- [nvidia-container-toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker)

Expand All @@ -69,16 +69,16 @@ Many users do not need a specific platform combination but would like to ensure

#### Preferred - Docker CE v19+ and `nvidia-container-toolkit`
```bash
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
$ docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

#### Legacy - Docker CE v18 and `nvidia-docker2`
```bash
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
$ docker pull nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
$ docker run --runtime=nvidia --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

### Container Ports
Expand Down Expand Up @@ -117,7 +117,7 @@ $ docker run \
-p 8888:8888 \
-p 8787:8787 \
-p 8786:8786 \
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

### Bind Mounts
Expand All @@ -140,7 +140,7 @@ $ docker run \
-it \
--gpus all \
-v $(pwd)/environment.yml:/opt/rapids/environment.yml \
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

### Use JupyterLab to Explore the Notebooks
Expand Down Expand Up @@ -168,14 +168,14 @@ You are free to modify the above steps. For example, you can launch an interacti
```bash
$ docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
-v /path/to/host/data:/rapids/my_data \
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```

#### Legacy - Docker CE v18 and `nvidia-docker2`
```bash
$ docker run --runtime=nvidia --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
-v /path/to/host/data:/rapids/my_data \
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu18.04-py3.10
nvcr.io/nvidia/rapidsai/rapidsai:23.02-cuda11.8-runtime-ubuntu22.04-py3.10
```
This will map data from your host operating system to the container OS in the `/rapids/my_data` directory. You may need to modify the provided notebooks for the new data paths.

Expand Down
Loading

0 comments on commit df87703

Please sign in to comment.