Skip to content

aiguoth/reading-list-for-attacking

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 

Repository files navigation

Reading list for attacking

[1] Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey. 英文综述 link

[2] 知乎专栏,前几章有介绍样本对抗攻防的基础的 link

[3] pytorch官方文档----60分钟入门 link

[4] 样本对抗的来龙去脉和本质 link

[5] 样本对抗的一个相关比赛 link

[6] Awesome ML Attack link

[7] 简单易懂的人脸识别过程和原理介绍 link

[8] 一种鲁棒的神经网络架构(防御) link

[9] 对抗训练论文一(防御) link

[10] Ian GoodFellow机器学习的博客 link

Open Source about ADVERSARIAL EXAMPLE GENERATION

[1] PyTorch FGSM Tutorial link

[2] PyTorch C&W Attack link

[3] PyTorch DDN Attack(CVPR2019) link

Face Recognition

[1] Loss Function for training Face Recognition Model link

[2] Face Recognition Model: ZhaoJ9014/face.evoLVe.PyTorch (默认白盒模型) link

[3] Face Recognition Model: ageitgey/face_recognition (第一次老师给的白盒模型) link

Neural network backdoor

[0] 浙大的一篇调研 link

[1] Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. link 翻译 link

[2] Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning.(key pattern) link

[3] A General Framework for Adversarial Examples with Objectives.(AGN方法) link 机器之心的解读link

[4] Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition. link 源码link

[5] Robust Physical-World Attacks on Deep Learning Visual Classification.(对路牌攻击CVPR2018) link

Black-box Attacks

[0] ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models 没有使用替代模型,用零阶替代一阶 link

[1] AutoZOOM: Autoencoder-based Zeroth Order Optimization Method for Attacking Black-box Neural Networks  ZOO模型的优化,提高对抗样本的生成效率 link

[2] Delving into Transferable Adversarial Examples and Black-box Attacks 采用集成的方式,用了替代模型求解梯度 link

[3] Ensemble Adversarial Training Attacks and Defenses link

[4] Curls & Whey: Boosting Black-Box Adversarial Attacks(CVPR2019 oral) 主要解决对抗样本的多样性(两种梯度迭代方式),二分法减小噪声的方差 link 知乎讲解link GitHublink

[5] Black-box Adversarial Attacks with Limited Queries and Information 利用演化算法来攻击 link github源码 (https://github.com/labsix/limited-blackbox-attacks)

[6] SemanticAdv: Generating Adversarial Examples via Attribute-conditional Image Editing 通过人脸编辑来做人脸数据集上的对抗样本 link

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published