Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reorganize code #179

Merged
merged 5 commits into from
Aug 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions src/SparseConnectivityTracer.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,13 +27,15 @@ include("operators.jl")
include("overloads/conversion.jl")
include("overloads/gradient_tracer.jl")
include("overloads/hessian_tracer.jl")
include("overloads/ambiguities.jl")
include("overloads/special_cases.jl")
include("overloads/ifelse_global.jl")
include("overloads/dual.jl")
include("overloads/overload_all.jl")
include("overloads/arrays.jl")
include("overloads/utils.jl")

include("interface.jl")
include("adtypes.jl")
include("trace_functions.jl")
include("adtypes_interface.jl")

export TracerSparsityDetector
export TracerLocalSparsityDetector
Expand Down
7 changes: 7 additions & 0 deletions src/adtypes.jl → src/adtypes_interface.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
#= This file implements the ADTypes interface for `AbstractSparsityDetector`s =#

const DEFAULT_GRADIENT_TRACER = GradientTracer{IndexSetGradientPattern{Int,BitSet}}
const DEFAULT_HESSIAN_TRACER = HessianTracer{
DictHessianPattern{Int,BitSet,Dict{Int,BitSet},NotShared}
}

"""
TracerSparsityDetector <: ADTypes.AbstractSparsityDetector

Expand Down
35 changes: 35 additions & 0 deletions src/overloads/ambiguities.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
## Special overloads to avoid ambiguity errors
for S in (Integer, Rational, Irrational{:ℯ})
Base.:^(t::T, ::S) where {T<:GradientTracer} = t
Base.:^(::S, t::T) where {T<:GradientTracer} = t
Base.:^(t::T, ::S) where {T<:HessianTracer} = hessian_tracer_1_to_1(t, false, false)
Base.:^(::S, t::T) where {T<:HessianTracer} = hessian_tracer_1_to_1(t, false, false)

function Base.:^(d::D, y::S) where {P,T<:GradientTracer,D<:Dual{P,T}}
x = primal(d)
t = gradient_tracer_1_to_1(tracer(d), false)
return Dual(x^y, t)
end
function Base.:^(x::S, d::D) where {P,T<:GradientTracer,D<:Dual{P,T}}
y = primal(d)
t = gradient_tracer_1_to_1(tracer(d), false)
return Dual(x^y, t)
end

function Base.:^(d::D, y::S) where {P,T<:HessianTracer,D<:Dual{P,T}}
x = primal(d)
t = hessian_tracer_1_to_1(tracer(d), false, false)
return Dual(x^y, t)
end
function Base.:^(x::S, d::D) where {P,T<:HessianTracer,D<:Dual{P,T}}
y = primal(d)
t = hessian_tracer_1_to_1(tracer(d), false, false)
return Dual(x^y, t)
end
end

for TT in (GradientTracer, HessianTracer)
function Base.isless(dx::D, y::AbstractFloat) where {P<:Real,T<:TT,D<:Dual{P,T}}
return isless(primal(dx), y)
end
end
46 changes: 0 additions & 46 deletions src/overloads/gradient_tracer.jl
Original file line number Diff line number Diff line change
Expand Up @@ -261,49 +261,3 @@ function overload_gradient_1_to_2(M::Symbol, f)

return Expr(:block, expr_gradienttracer, expr_dual)
end

## Special overloads to avoid ambiguity errors

for S in (Integer, Rational, Irrational{:ℯ})
Base.:^(t::T, ::S) where {T<:GradientTracer} = t
Base.:^(::S, t::T) where {T<:GradientTracer} = t
function Base.:^(d::D, y::S) where {P,T<:GradientTracer,D<:Dual{P,T}}
x = primal(d)
t = gradient_tracer_1_to_1(tracer(d), false)
return Dual(x^y, t)
end
function Base.:^(x::S, d::D) where {P,T<:GradientTracer,D<:Dual{P,T}}
y = primal(d)
t = gradient_tracer_1_to_1(tracer(d), false)
return Dual(x^y, t)
end
end

function Base.isless(dx::D, y::AbstractFloat) where {P<:Real,T<:GradientTracer,D<:Dual{P,T}}
return isless(primal(dx), y)
end

## Rounding
Base.round(::T, ::RoundingMode; kwargs...) where {T<:GradientTracer} = myempty(T)
function Base.round(
d::D, mode::RoundingMode; kwargs...
) where {P,T<:GradientTracer,D<:Dual{P,T}}
return round(primal(d), mode; kwargs...) # only return primal
end

for RR in (Real, Integer, Bool)
Base.round(::Type{R}, ::T) where {R<:RR,T<:GradientTracer} = myempty(T)
function Base.round(::Type{R}, d::D) where {R<:RR,P,T<:GradientTracer,D<:Dual{P,T}}
return round(R, primal(d)) # only return primal
end
end

## Random numbers
Base.rand(::AbstractRNG, ::SamplerType{T}) where {T<:GradientTracer} = myempty(T)
function Base.rand(
rng::AbstractRNG, ::SamplerType{D}
) where {P,T<:GradientTracer,D<:Dual{P,T}}
p = rand(rng, P)
t = myempty(T)
return Dual(p, t)
end
47 changes: 0 additions & 47 deletions src/overloads/hessian_tracer.jl
Original file line number Diff line number Diff line change
Expand Up @@ -369,50 +369,3 @@ function overload_hessian_1_to_2(M::Symbol, f)

return Expr(:block, expr_hessiantracer, expr_dual)
end

## Special overloads to avoid ambiguity errors

for S in (Integer, Rational, Irrational{:ℯ})
Base.:^(t::T, ::S) where {T<:HessianTracer} = hessian_tracer_1_to_1(t, false, false)
Base.:^(::S, t::T) where {T<:HessianTracer} = hessian_tracer_1_to_1(t, false, false)

function Base.:^(d::D, y::S) where {P,T<:HessianTracer,D<:Dual{P,T}}
x = primal(d)
t = hessian_tracer_1_to_1(tracer(d), false, false)
return Dual(x^y, t)
end
function Base.:^(x::S, d::D) where {P,T<:HessianTracer,D<:Dual{P,T}}
y = primal(d)
t = hessian_tracer_1_to_1(tracer(d), false, false)
return Dual(x^y, t)
end
end

function Base.isless(dx::D, y::AbstractFloat) where {P<:Real,T<:HessianTracer,D<:Dual{P,T}}
return isless(primal(dx), y)
end

## Rounding
Base.round(t::T, ::RoundingMode; kwargs...) where {T<:HessianTracer} = myempty(T)
function Base.round(
d::D, mode::RoundingMode; kwargs...
) where {P,T<:HessianTracer,D<:Dual{P,T}}
return round(primal(d), mode; kwargs...) # only return primal
end

for RR in (Real, Integer, Bool)
Base.round(::Type{R}, ::T) where {R<:RR,T<:HessianTracer} = myempty(T)
function Base.round(::Type{R}, d::D) where {R<:RR,P,T<:HessianTracer,D<:Dual{P,T}}
return round(R, primal(d)) # only return primal
end
end

## Random numbers
Base.rand(::AbstractRNG, ::SamplerType{T}) where {T<:HessianTracer} = myempty(T)
function Base.rand(
rng::AbstractRNG, ::SamplerType{D}
) where {P,T<:HessianTracer,D<:Dual{P,T}}
p = rand(rng, P)
t = myempty(T)
return Dual(p, t)
end
25 changes: 25 additions & 0 deletions src/overloads/special_cases.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
## Rounding
Base.round(t::T, ::RoundingMode; kwargs...) where {T<:AbstractTracer} = myempty(T)

function Base.round(
d::D, mode::RoundingMode; kwargs...
) where {P,T<:AbstractTracer,D<:Dual{P,T}}
return round(primal(d), mode; kwargs...) # only return primal
end

for RR in (Real, Integer, Bool)
Base.round(::Type{R}, ::T) where {R<:RR,T<:AbstractTracer} = myempty(T)
function Base.round(::Type{R}, d::D) where {R<:RR,P,T<:AbstractTracer,D<:Dual{P,T}}
return round(R, primal(d)) # only return primal
end
end

## Random numbers
Base.rand(::AbstractRNG, ::SamplerType{T}) where {T<:AbstractTracer} = myempty(T)
function Base.rand(
rng::AbstractRNG, ::SamplerType{D}
) where {P,T<:AbstractTracer,D<:Dual{P,T}}
p = rand(rng, P)
t = myempty(T)
return Dual(p, t)
end
File renamed without changes.
9 changes: 5 additions & 4 deletions src/interface.jl → src/trace_functions.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
const DEFAULT_GRADIENT_TRACER = GradientTracer{IndexSetGradientPattern{Int,BitSet}}
const DEFAULT_HESSIAN_TRACER = HessianTracer{
DictHessianPattern{Int,BitSet,Dict{Int,BitSet},NotShared}
}
#= This file handles the actual tracing of functions:
1) creating tracers from inputs
2) evaluating the function with the created tracers
3) parsing the resulting tracers into an output matrix
=#

#==================#
# Enumerate inputs #
Expand Down
139 changes: 139 additions & 0 deletions test/ext/test_NNlib.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
using SparseConnectivityTracer
using NNlib: NNlib
using Test

NNLIB_ACTIVATIONS_S = (
NNlib.σ,
NNlib.celu,
NNlib.elu,
NNlib.gelu,
NNlib.hardswish,
NNlib.lisht,
NNlib.logσ,
NNlib.logcosh,
NNlib.mish,
NNlib.selu,
NNlib.softplus,
NNlib.softsign,
NNlib.swish,
NNlib.sigmoid_fast,
NNlib.tanhshrink,
NNlib.tanh_fast,
)
NNLIB_ACTIVATIONS_F = (
NNlib.hardσ,
NNlib.hardtanh,
NNlib.leakyrelu,
NNlib.relu,
NNlib.relu6,
NNlib.softshrink,
NNlib.trelu,
)
NNLIB_ACTIVATIONS = union(NNLIB_ACTIVATIONS_S, NNLIB_ACTIVATIONS_F)

@testset "Jacobian Global" begin
method = TracerSparsityDetector()
J(f, x) = jacobian_sparsity(f, x, method)

@testset "$f" for f in NNLIB_ACTIVATIONS
@test J(f, 1) ≈ [1;;]
end
end

@testset "Jacobian Local" begin
method = TracerLocalSparsityDetector()
J(f, x) = jacobian_sparsity(f, x, method)

@test J(NNlib.relu, -1) ≈ [0;;]
@test J(NNlib.relu, 1) ≈ [1;;]
@test J(NNlib.elu, -1) ≈ [1;;]
@test J(NNlib.elu, 1) ≈ [1;;]
@test J(NNlib.celu, -1) ≈ [1;;]
@test J(NNlib.celu, 1) ≈ [1;;]
@test J(NNlib.selu, -1) ≈ [1;;]
@test J(NNlib.selu, 1) ≈ [1;;]

@test J(NNlib.relu6, -1) ≈ [0;;]
@test J(NNlib.relu6, 1) ≈ [1;;]
@test J(NNlib.relu6, 7) ≈ [0;;]

@test J(NNlib.trelu, 0.9) ≈ [0;;]
@test J(NNlib.trelu, 1.1) ≈ [1;;]

@test J(NNlib.swish, -5) ≈ [1;;]
@test J(NNlib.swish, 0) ≈ [1;;]
@test J(NNlib.swish, 5) ≈ [1;;]

@test J(NNlib.hardswish, -5) ≈ [0;;]
@test J(NNlib.hardswish, 0) ≈ [1;;]
@test J(NNlib.hardswish, 5) ≈ [1;;]

@test J(NNlib.hardσ, -4) ≈ [0;;]
@test J(NNlib.hardσ, 0) ≈ [1;;]
@test J(NNlib.hardσ, 4) ≈ [0;;]

@test J(NNlib.hardtanh, -2) ≈ [0;;]
@test J(NNlib.hardtanh, 0) ≈ [1;;]
@test J(NNlib.hardtanh, 2) ≈ [0;;]

@test J(NNlib.softshrink, -1) ≈ [1;;]
@test J(NNlib.softshrink, 0) ≈ [0;;]
@test J(NNlib.softshrink, 1) ≈ [1;;]
end

@testset "Global Hessian" begin
method = TracerSparsityDetector()
H(f, x) = hessian_sparsity(f, x, method)

@testset "First-order differentiable" begin
@testset "$f" for f in NNLIB_ACTIVATIONS_F
@test H(f, 1) ≈ [0;;]
end
end
@testset "Second-order differentiable" begin
@testset "$f" for f in NNLIB_ACTIVATIONS_S
@test H(f, 1) ≈ [1;;]
end
end
end

@testset "Local Hessian" begin
method = TracerLocalSparsityDetector()
H(f, x) = hessian_sparsity(f, x, method)

@test H(NNlib.relu, -1) ≈ [0;;]
@test H(NNlib.relu, 1) ≈ [0;;]
@test H(NNlib.elu, -1) ≈ [1;;]
@test H(NNlib.elu, 1) ≈ [0;;]
@test H(NNlib.celu, -1) ≈ [1;;]
@test H(NNlib.celu, 1) ≈ [0;;]
@test H(NNlib.selu, -1) ≈ [1;;]
@test H(NNlib.selu, 1) ≈ [0;;]

@test H(NNlib.relu6, -1) ≈ [0;;]
@test H(NNlib.relu6, 1) ≈ [0;;]
@test H(NNlib.relu6, 7) ≈ [0;;]

@test H(NNlib.trelu, 0.9) ≈ [0;;]
@test H(NNlib.trelu, 1.1) ≈ [0;;]

@test H(NNlib.swish, -5) ≈ [1;;]
@test H(NNlib.swish, 0) ≈ [1;;]
@test H(NNlib.swish, 5) ≈ [1;;]

@test H(NNlib.hardswish, -5) ≈ [0;;]
@test H(NNlib.hardswish, 0) ≈ [1;;]
@test H(NNlib.hardswish, 5) ≈ [0;;]

@test H(NNlib.hardσ, -4) ≈ [0;;]
@test H(NNlib.hardσ, 0) ≈ [0;;]
@test H(NNlib.hardσ, 4) ≈ [0;;]

@test H(NNlib.hardtanh, -2) ≈ [0;;]
@test H(NNlib.hardtanh, 0) ≈ [0;;]
@test H(NNlib.hardtanh, 2) ≈ [0;;]

@test H(NNlib.softshrink, -1) ≈ [0;;]
@test H(NNlib.softshrink, 0) ≈ [0;;]
@test H(NNlib.softshrink, 1) ≈ [0;;]
end
42 changes: 42 additions & 0 deletions test/ext/test_SpecialFunctions.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@

using SparseConnectivityTracer
using SpecialFunctions: erf, beta
using Test

# Load definitions of GRADIENT_TRACERS, GRADIENT_PATTERNS, HESSIAN_TRACERS and HESSIAN_PATTERNS
include("../tracers_definitions.jl")

@testset "Jacobian Global" begin
method = TracerSparsityDetector()
J(f, x) = jacobian_sparsity(f, x, method)

@test J(x -> erf(x[1]), rand(2)) == [1 0]
@test J(x -> beta(x[1], x[2]), rand(3)) == [1 1 0]
end

# TODO: add tests
# @testset "Jacobian Local" begin
# method = TracerLocalSparsityDetector()
# J(f, x) = jacobian_sparsity(f, x, method)
# end

@testset "Global Hessian" begin
method = TracerSparsityDetector()
H(f, x) = hessian_sparsity(f, x, method)

@test H(x -> erf(x[1]), rand(2)) == [
1 0
0 0
]
@test H(x -> beta(x[1], x[2]), rand(3)) == [
1 1 0
1 1 0
0 0 0
]
end

# TODO: add tests
# @testset "Local Hessian" begin
# method = TracerLocalSparsityDetector()
# H(f, x) = hessian_sparsity(f, x, method)
# end
Loading
Loading