Skip to content

Commit

Permalink
[Enhance] Mask2Former Instance Segm Only (open-mmlab#7571)
Browse files Browse the repository at this point in the history
* Mask2Former/MaskFormer instance only training/eval

* obsolete config names

* if cond is None fix

* white space

* fix tests

* yapf formatting fix

* semantic_seg None docstring

* original config names

* pan/ins unit test

* show_result comment

* pan/ins head unit test

* redundant test

* inherit configs

* correct gpu #

* revert version

* BaseDetector.show_result comment

* revert more versions

* clarify comment

* clarify comment

* add FilterAnnotations to data pipeline

* more complete Returns docstring

* use pytest.mark.parametrize decorator

* fix docstring formatting

* lint

* Include instances passing mask area test

* Make FilterAnnotations generic for masks or bboxes

* Duplicate assertion

* Add pad config

* Less hard coded padding setting

* Clarify test arguments

* Additional inst_seg configs

* delete configs

* Include original dev branch configs

* Fix indent

* fix lint error from merge conflict

* Update .pre-commit-config.yaml

* Rename mask2former_r50_lsj_8x2_50e_coco.py to mask2former_r50_lsj_8x2_50e_coco-panoptic.py

* Update and rename mask2former_r101_lsj_8x2_50e_coco.py to mask2former_r101_lsj_8x2_50e_coco-panoptic.py

* Update and rename mask2former_swin-b-p4-w12-384-in21k_lsj_8x2_50e_coco.py to mask2former_swin-b-p4-w12-384-in21k_lsj_8x2_50e_coco-panoptic.py

* Update and rename mask2former_swin-b-p4-w12-384_lsj_8x2_50e_coco.py to mask2former_swin-b-p4-w12-384_lsj_8x2_50e_coco-panoptic.py

* Update and rename mask2former_swin-l-p4-w12-384-in21k_lsj_16x1_100e_coco.py to mask2former_swin-l-p4-w12-384-in21k_lsj_16x1_100e_coco-panoptic.py

* Update and rename mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco.py to mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco-panoptic.py

* Update and rename mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco.py to mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco-panoptic.py

* Create mask2former_r50_lsj_8x2_50e_coco.py

* Create mask2former_r101_lsj_8x2_50e_coco.py

* Create mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco.py

* Create mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco.py

* Update test_forward.py

* remove gt_sem_seg

Co-authored-by: Cedric Luo <[email protected]>
  • Loading branch information
2 people authored and ZwwWayne committed Jul 19, 2022
1 parent 06b6ad2 commit 4d3ca4a
Show file tree
Hide file tree
Showing 14 changed files with 481 additions and 237 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
_base_ = './mask2former_r50_lsj_8x2_50e_coco-panoptic.py'

model = dict(
backbone=dict(
depth=101,
init_cfg=dict(type='Pretrained',
checkpoint='torchvision://resnet101')))
2 changes: 1 addition & 1 deletion configs/mask2former/mask2former_r101_lsj_8x2_50e_coco.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
_base_ = './mask2former_r50_lsj_8x2_50e_coco.py'
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco.py']

model = dict(
backbone=dict(
Expand Down
253 changes: 253 additions & 0 deletions configs/mask2former/mask2former_r50_lsj_8x2_50e_coco-panoptic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
_base_ = [
'../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py'
]
num_things_classes = 80
num_stuff_classes = 53
num_classes = num_things_classes + num_stuff_classes
model = dict(
type='Mask2Former',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
panoptic_head=dict(
type='Mask2FormerHead',
in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside
strides=[4, 8, 16, 32],
feat_channels=256,
out_channels=256,
num_things_classes=num_things_classes,
num_stuff_classes=num_stuff_classes,
num_queries=100,
num_transformer_feat_level=3,
pixel_decoder=dict(
type='MSDeformAttnPixelDecoder',
num_outs=3,
norm_cfg=dict(type='GN', num_groups=32),
act_cfg=dict(type='ReLU'),
encoder=dict(
type='DetrTransformerEncoder',
num_layers=6,
transformerlayers=dict(
type='BaseTransformerLayer',
attn_cfgs=dict(
type='MultiScaleDeformableAttention',
embed_dims=256,
num_heads=8,
num_levels=3,
num_points=4,
im2col_step=64,
dropout=0.0,
batch_first=False,
norm_cfg=None,
init_cfg=None),
ffn_cfgs=dict(
type='FFN',
embed_dims=256,
feedforward_channels=1024,
num_fcs=2,
ffn_drop=0.0,
act_cfg=dict(type='ReLU', inplace=True)),
operation_order=('self_attn', 'norm', 'ffn', 'norm')),
init_cfg=None),
positional_encoding=dict(
type='SinePositionalEncoding', num_feats=128, normalize=True),
init_cfg=None),
enforce_decoder_input_project=False,
positional_encoding=dict(
type='SinePositionalEncoding', num_feats=128, normalize=True),
transformer_decoder=dict(
type='DetrTransformerDecoder',
return_intermediate=True,
num_layers=9,
transformerlayers=dict(
type='DetrTransformerDecoderLayer',
attn_cfgs=dict(
type='MultiheadAttention',
embed_dims=256,
num_heads=8,
attn_drop=0.0,
proj_drop=0.0,
dropout_layer=None,
batch_first=False),
ffn_cfgs=dict(
embed_dims=256,
feedforward_channels=2048,
num_fcs=2,
act_cfg=dict(type='ReLU', inplace=True),
ffn_drop=0.0,
dropout_layer=None,
add_identity=True),
feedforward_channels=2048,
operation_order=('cross_attn', 'norm', 'self_attn', 'norm',
'ffn', 'norm')),
init_cfg=None),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=2.0,
reduction='mean',
class_weight=[1.0] * num_classes + [0.1]),
loss_mask=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=5.0),
loss_dice=dict(
type='DiceLoss',
use_sigmoid=True,
activate=True,
reduction='mean',
naive_dice=True,
eps=1.0,
loss_weight=5.0)),
panoptic_fusion_head=dict(
type='MaskFormerFusionHead',
num_things_classes=num_things_classes,
num_stuff_classes=num_stuff_classes,
loss_panoptic=None,
init_cfg=None),
train_cfg=dict(
num_points=12544,
oversample_ratio=3.0,
importance_sample_ratio=0.75,
assigner=dict(
type='MaskHungarianAssigner',
cls_cost=dict(type='ClassificationCost', weight=2.0),
mask_cost=dict(
type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
dice_cost=dict(
type='DiceCost', weight=5.0, pred_act=True, eps=1.0)),
sampler=dict(type='MaskPseudoSampler')),
test_cfg=dict(
panoptic_on=True,
# For now, the dataset does not support
# evaluating semantic segmentation metric.
semantic_on=False,
instance_on=True,
# max_per_image is for instance segmentation.
max_per_image=100,
iou_thr=0.8,
# In Mask2Former's panoptic postprocessing,
# it will filter mask area where score is less than 0.5 .
filter_low_score=True),
init_cfg=None)

# dataset settings
image_size = (1024, 1024)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(
type='LoadPanopticAnnotations',
with_bbox=True,
with_mask=True,
with_seg=True),
dict(type='RandomFlip', flip_ratio=0.5),
# large scale jittering
dict(
type='Resize',
img_scale=image_size,
ratio_range=(0.1, 2.0),
multiscale_mode='range',
keep_ratio=True),
dict(
type='RandomCrop',
crop_size=image_size,
crop_type='absolute',
recompute_bbox=True,
allow_negative_crop=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=image_size),
dict(type='DefaultFormatBundle', img_to_float=True),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data_root = 'data/coco/'
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline),
val=dict(
pipeline=test_pipeline,
ins_ann_file=data_root + 'annotations/instances_val2017.json',
),
test=dict(
pipeline=test_pipeline,
ins_ann_file=data_root + 'annotations/instances_val2017.json',
))

embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
# optimizer
optimizer = dict(
type='AdamW',
lr=0.0001,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=dict(
custom_keys={
'backbone': dict(lr_mult=0.1, decay_mult=1.0),
'query_embed': embed_multi,
'query_feat': embed_multi,
'level_embed': embed_multi,
},
norm_decay_mult=0.0))
optimizer_config = dict(grad_clip=dict(max_norm=0.01, norm_type=2))

# learning policy
lr_config = dict(
policy='step',
gamma=0.1,
by_epoch=False,
step=[327778, 355092],
warmup='linear',
warmup_by_epoch=False,
warmup_ratio=1.0, # no warmup
warmup_iters=10)

max_iters = 368750
runner = dict(type='IterBasedRunner', max_iters=max_iters)

log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
dict(type='TensorboardLoggerHook', by_epoch=False)
])
interval = 5000
workflow = [('train', interval)]
checkpoint_config = dict(
by_epoch=False, interval=interval, save_last=True, max_keep_ckpts=3)

# Before 365001th iteration, we do evaluation every 5000 iterations.
# After 365000th iteration, we do evaluation every 368750 iterations,
# which means that we do evaluation at the end of training.
dynamic_intervals = [(max_iters // interval * interval + 1, max_iters)]
evaluation = dict(
interval=interval,
dynamic_intervals=dynamic_intervals,
metric=['PQ', 'bbox', 'segm'])
Loading

0 comments on commit 4d3ca4a

Please sign in to comment.