Skip to content

Commit

Permalink
Add tests and format
Browse files Browse the repository at this point in the history
  • Loading branch information
Zinoex committed Nov 26, 2024
1 parent 3ad8992 commit b182859
Show file tree
Hide file tree
Showing 6 changed files with 204 additions and 14 deletions.
5 changes: 3 additions & 2 deletions src/synthesis.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ If the specification is infinite time, then the strategy is stationary and only
It is possible to provide a callback function that will be called at each iteration with the current value function and
iteration count. The callback function should have the signature `callback(V::AbstractArray, k::Int)`.
"""
function control_synthesis(problem::Problem; callback=nothing)
function control_synthesis(problem::Problem; callback = nothing)
spec = specification(problem)
prop = system_property(spec)

Expand All @@ -18,7 +18,8 @@ function control_synthesis(problem::Problem; callback=nothing)

strategy_config =
isfinitetime(prop) ? TimeVaryingStrategyConfig() : StationaryStrategyConfig()
V, k, res, strategy_cache = _value_iteration!(strategy_config, problem; callback=callback)
V, k, res, strategy_cache =
_value_iteration!(strategy_config, problem; callback = callback)

return cachetostrategy(strategy_cache), V, k, res
end
12 changes: 8 additions & 4 deletions src/value_iteration.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ termination_criteria(prop, finitetime::Val{true}) =
struct CovergenceCriteria{T <: AbstractFloat} <: TerminationCriteria
tol::T
end
(f::CovergenceCriteria)(V, k, u) = maximum(abs,u) < f.tol
(f::CovergenceCriteria)(V, k, u) = maximum(abs, u) < f.tol
termination_criteria(prop, finitetime::Val{false}) =
CovergenceCriteria(convergence_eps(prop))

Expand Down Expand Up @@ -73,17 +73,21 @@ V, k, residual = value_iteration(problem)
```
"""
function value_iteration(problem::Problem; callback=nothing)
function value_iteration(problem::Problem; callback = nothing)
strategy_config = whichstrategyconfig(problem)
V, k, res, _ = _value_iteration!(strategy_config, problem; callback=callback)
V, k, res, _ = _value_iteration!(strategy_config, problem; callback = callback)

return V, k, res
end
whichstrategyconfig(::Problem{S, F, <:NoStrategy}) where {S, F} = NoStrategyConfig()
whichstrategyconfig(::Problem{S, F, <:AbstractStrategy}) where {S, F} =
GivenStrategyConfig()

function _value_iteration!(strategy_config::AbstractStrategyConfig, problem::Problem; callback=nothing)
function _value_iteration!(
strategy_config::AbstractStrategyConfig,
problem::Problem;
callback = nothing,
)
mp = system(problem)
spec = specification(problem)
term_criteria = termination_criteria(spec)
Expand Down
30 changes: 27 additions & 3 deletions test/base/vi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,14 @@ V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeReachAvoid([3], [2], 11)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 11
@test all(V_fixed_it2 .>= 0.0)
@test all(V_fixed_it .<= V_fixed_it2)

prop = InfiniteTimeReachAvoid([3], [2], 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
Expand Down Expand Up @@ -83,6 +91,22 @@ V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

# problem = Problem(mc, InfiniteTimeReward([2.0, 1.0, 0.0], 0.9, 1e-6))
# V_conv, _, u = value_iteration(problem)
# @test maximum(u) <= 1e-6
prop = FiniteTimeReward([2.0, 1.0, -1.0], 0.9, 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it2 .<= V_fixed_it)

prop = InfiniteTimeReward([2.0, 1.0, 0.0], 0.9, 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = InfiniteTimeReward([2.0, 1.0, -1.0], 0.9, 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
58 changes: 55 additions & 3 deletions test/cuda/dense/vi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -21,38 +21,90 @@ spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeReachability([3], 11)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 11
@test all(V_fixed_it2 .>= 0.0)
@test all(V_fixed_it .<= V_fixed_it2)

prop = InfiniteTimeReachability([3], 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = FiniteTimeReachAvoid([3], [2], 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeReachAvoid([3], [2], 11)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 11
@test all(V_fixed_it2 .>= 0.0)
@test all(V_fixed_it .<= V_fixed_it2)

prop = InfiniteTimeReachAvoid([3], [2], 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = FiniteTimeSafety([3], 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeSafety([3], 11)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 11
@test all(V_fixed_it2 .>= 0.0)
@test all(V_fixed_it2 .<= V_fixed_it)

prop = InfiniteTimeSafety([3], 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = IntervalMDP.cu(FiniteTimeReward([2.0, 1.0, 0.0], 0.9, 10))
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

# problem = Problem(mc, InfiniteTimeReward([2.0, 1.0, 0.0], 0.9, 1e-6))
# V_conv, _, u = value_iteration(problem)
# @test maximum(u) <= 1e-6
prop = IntervalMDP.cu(FiniteTimeReward([2.0, 1.0, -1.0], 0.9, 10))
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it2 .<= V_fixed_it)

prop = IntervalMDP.cu(InfiniteTimeReward([2.0, 1.0, 0.0], 0.9, 1e-6))
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = IntervalMDP.cu(InfiniteTimeReward([2.0, 1.0, -1.0], 0.9, 1e-6))
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
58 changes: 56 additions & 2 deletions test/cuda/sparse/vi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,40 +15,94 @@ prob = IntervalProbabilities(;
)

mc = IntervalMDP.cu(IntervalMarkovChain(prob, [1]))

prop = FiniteTimeReachability([3], 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeReachability([3], 11)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 11
@test all(V_fixed_it2 .>= 0.0)
@test all(V_fixed_it .<= V_fixed_it2)

prop = InfiniteTimeReachability([3], 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = FiniteTimeReachAvoid([3], [2], 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeReachAvoid([3], [2], 11)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 11
@test all(V_fixed_it2 .>= 0.0)
@test all(V_fixed_it .<= V_fixed_it2)

prop = InfiniteTimeReachAvoid([3], [2], 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = FiniteTimeReward(IntervalMDP.cu([2.0, 1.0, 0.0]), 0.9, 10)
prop = FiniteTimeSafety([3], 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeSafety([3], 11)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 11
@test all(V_fixed_it2 .>= 0.0)
@test all(V_fixed_it2 .<= V_fixed_it)

prop = InfiniteTimeSafety([3], 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = IntervalMDP.cu(FiniteTimeReward([2.0, 1.0, 0.0], 0.9, 10))
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = IntervalMDP.cu(FiniteTimeReward([2.0, 1.0, -1.0], 0.9, 10))
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10

prop = IntervalMDP.cu(InfiniteTimeReward([2.0, 1.0, 0.0], 0.9, 1e-6))
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = IntervalMDP.cu(InfiniteTimeReward([2.0, 1.0, -1.0], 0.9, 1e-6))
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
55 changes: 55 additions & 0 deletions test/sparse/vi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@ spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeReachability([3], 11)
spec = Specification(prop, Pessimistic)
Expand All @@ -34,21 +35,75 @@ spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = FiniteTimeReachAvoid([3], [2], 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeReachAvoid([3], [2], 11)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 11
@test all(V_fixed_it2 .>= 0.0)
@test all(V_fixed_it .<= V_fixed_it2)

prop = InfiniteTimeReachAvoid([3], [2], 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = FiniteTimeSafety([3], 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeSafety([3], 11)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 11
@test all(V_fixed_it2 .>= 0.0)
@test all(V_fixed_it2 .<= V_fixed_it)

prop = InfiniteTimeSafety([3], 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = FiniteTimeReward([2.0, 1.0, 0.0], 0.9, 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it .>= 0.0)

prop = FiniteTimeReward([2.0, 1.0, -1.0], 0.9, 10)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_fixed_it2, k, _ = value_iteration(problem)
@test k == 10
@test all(V_fixed_it2 .<= V_fixed_it)

prop = InfiniteTimeReward([2.0, 1.0, 0.0], 0.9, 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6
@test all(V_conv .>= 0.0)

prop = InfiniteTimeReward([2.0, 1.0, -1.0], 0.9, 1e-6)
spec = Specification(prop, Pessimistic)
problem = Problem(mc, spec)
V_conv, _, u = value_iteration(problem)
@test maximum(u) <= 1e-6

0 comments on commit b182859

Please sign in to comment.