Skip to content

YoniChechik/AI_is_Math

Folders and files

NameName
Last commit message
Last commit date

Latest commit

eb24f5d · Jan 12, 2025
Jan 12, 2025
Jan 12, 2025
Jan 2, 2025
Jan 2, 2025
Jan 2, 2025
Jan 2, 2025
Jan 2, 2025
Dec 7, 2021
Jan 2, 2025
Jan 2, 2025
Jan 2, 2025
Jan 23, 2023
Jan 2, 2025
Jan 2, 2025
Jan 9, 2024
Jan 5, 2024
Aug 21, 2021
Jan 2, 2025
Jan 2, 2025
Jan 29, 2024
Jan 26, 2023
Feb 26, 2024
Feb 2, 2020
Jan 5, 2024
Feb 1, 2024
Feb 1, 2024

Repository files navigation

AI is Math

Check out my course site: AIisMath.com

This is my CV course raw data git repo - you can see the raw .py/ .ppt files here.

Course TOC

Intro to CV and Python (slides)

Basic image processing (slides)

Filtering and resampling (slides)

  • Noise and filtering (notebook)
  • Frequency representation
  • Decimation
  • Interpolation

Edge Detection (slides)

Curve fitting (slides)

Hough transform (slides)

Image formation (slides)

  • BRDF
  • Pinhole camera
  • Digital camera
  • The human eye

Geometric transformation (slides)

  • 2D->2D transformations (notebook)
  • 3D->3D transformations
  • 3D->2D transformations (3D projections)
    • Perspective projection
    • Orthographic projection

Camera calibration (slides)

  • What is camera calibration?
  • Camera extrinsics
  • Perspective projection
  • Camera intrinsics
  • Full camera matrix
  • Calibration methods and distortions (notebook)

Features (slides)

  • What and why we need features detection?
  • Feature detection
  • Feature description
    • Template matching
    • HOG
    • SIFT descriptor
  • SIFT feature matching (SIFT notebook)
  • Panoramas

Stereo (slides)

  • Structure from motion
  • Triangulation
  • Stereo matching
  • Camera rectification
  • Epipolar geometry
    • Essential matrix
    • Fundamental matrix
    • Estimating the fundamental matrix
  • Other 3D sensors

Neural networks basics (slides)

  • The classification problem- again
  • NN history
  • Perceptron
    • Hyperplanes
    • Activation
  • Dense layer
  • Multi-layer perceptron (MLP)
  • Optimization
    • Softmax + cross entropy + loss
    • Gradient descent
  • Basic data preprocessing
    • Data normalization
    • Train, validation and test splits
  • Fully connected net

Neural networks 2 (slides)

  • ConvNets
    • Convolution layer
    • Pooling layer
  • Overfitting