Pytorch implementation of our Q-ViT accepted by NeurIPS2022.
Any problem, please contact the first author (Email: [email protected]).
Our code is heavily borrowed from DeiT (https://github.com/facebookresearch/deit).
- Python 3.8
- Pytorch 1.7.1
- Torchvision 0.8.2
- timm 0.4.12
We train the 2/3/4 bits Q-ViT Deit-T with 512 batchsize and 3e-4 lr. Please note that we use DistribuedSampler for Tiny models.
When training 2/3 bits Q-ViT Deit-T, please change the model into 'twobits_deit_tiny_patch16_224/threebits_deit_tiny_patch16_224'
python -m torch.distributed.launch --master_port=12345 --nproc_per_node=4 --use_env main.py --model fourbits_deit_tiny_patch16_224 --epochs 300 --warmup-epochs 0 --weight-decay 0. --batch-size 128 --data-path /mnt/lustre/share/images/ --lr 3e-4 --no-repeated-aug --output_dir ./dist_4bit_tiny_lamb_3e-4_300_512 --distillation-type hard --teacher-model vit_deit_tiny_distilled_patch16_224 --opt fusedlamb
We train the 2/3/4 bits Q-ViT Deit-S with 512 batchsize and 3e-4 lr. Please note that we use RASampler for Small models.
When training 2/3 bits Q-ViT Deit-S, please change the model into 'twobits_deit_small_patch16_224/threebits_deit_small_patch16_224'
python -m torch.distributed.launch --master_port=12345 --nproc_per_node=4 --use_env main.py --model fourbits_deit_small_patch16_224 --epochs 300 --warmup-epochs 0 --weight-decay 0. --batch-size 128 --data-path /mnt/lustre/share/images/ --lr 3e-4 --repeated-aug --output_dir ./dist_4bit_small_lamb_3e-4_300_512 --distillation-type hard --teacher-model vit_deit_small_distilled_patch16_224 --opt fusedlamb
> python -m torch.distributed.launch --master_port=1234 --nproc_per_node=1 --use_env main.py --model twobits_deit_small_patch16_224 --weight-decay 0. --batch-size 64 --data-path /dataset/ImageNet --output_dir ./eval --resume ./best_checkpoint_2bit.pth --eval
> python -m torch.distributed.launch --master_port=1234 --nproc_per_node=1 --use_env main.py --model threebits_deit_small_patch16_224 --weight-decay 0. --batch-size 64 --data-path /dataset/ImageNet --output_dir ./eval --resume ./best_checkpoint_3bit.pth --eval
Methods | Top-1 acc | Top-5 acc | Quantized model link |
---|---|---|---|
Q-Deit-T (4-bit) | 74.3 | 91.6 | Model |
Methods | Top-1 acc | Top-5 acc | Quantized model link |
---|---|---|---|
Q-DeiT-S (3-bit) | 79.1 | 94.3 | Model |
Q-Deit-S (2-bit) | 72.0 | 90.3 | Model |
Training codes and other models will be open-sourced successively.