-
Notifications
You must be signed in to change notification settings - Fork 2
/
unet.py
142 lines (111 loc) · 7.3 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
from collections import OrderedDict
import tensorflow as tf
def unet(feature_in, labels, n_blocks=5, kernel_size=3, feature_num=64, n_classes=2, pool_size=2):
down_conv = OrderedDict()
b_constant = 0.1
w_stddev = np.sqrt(2 / (kernel_size ** n_blocks * feature_num))
for i_layer in range(0, n_blocks):
if i_layer == 0:
channel_out = feature_num
else:
channel_out = 2 ** i_layer * feature_num
feature_out1 = tf.nn.relu(normalization(
feature_in=tf.layers.conv2d(inputs=feature_in, filters=channel_out, kernel_size=kernel_size, padding='SAME',
kernel_initializer=tf.initializers.truncated_normal(stddev=w_stddev),
bias_initializer=tf.initializers.constant(b_constant)),
name='Downconv_%d_Conv_1' % i_layer))
down_conv[i_layer] = tf.nn.relu(normalization(
feature_in=tf.layers.conv2d(inputs=feature_out1, filters=channel_out, kernel_size=kernel_size,
padding='SAME',
kernel_initializer=tf.initializers.truncated_normal(stddev=w_stddev),
bias_initializer=tf.initializers.constant(b_constant)),
name='Downconv_%d_Conv_2' % i_layer))
feature_in = tf.layers.max_pooling2d(inputs=down_conv[i_layer], pool_size=pool_size, strides=pool_size)
for i_layer in range(n_blocks, -1, -1):
channel_out = 2 ** i_layer * feature_num
feature_out1 = tf.nn.relu(normalization(
feature_in=tf.layers.conv2d(inputs=feature_in, filters=channel_out, kernel_size=kernel_size, padding='SAME',
kernel_initializer=tf.initializers.truncated_normal(stddev=w_stddev),
bias_initializer=tf.initializers.constant(b_constant)),
name='Upconv_%d_Conv_1' % i_layer))
feature_out2 = tf.nn.relu(normalization(
feature_in=tf.layers.conv2d(inputs=feature_out1, filters=channel_out, kernel_size=kernel_size,
padding='SAME',
kernel_initializer=tf.initializers.truncated_normal(stddev=w_stddev),
bias_initializer=tf.initializers.constant(b_constant)),
name='Upconv_%d_Conv_2' % i_layer))
if i_layer != 0:
feature_out3 = tf.nn.relu(
normalization(feature_in=tf.layers.conv2d_transpose(inputs=feature_out2, filters=channel_out // 2,
kernel_size=pool_size, strides=pool_size,
padding='VALID',
kernel_initializer=tf.initializers.truncated_normal(
stddev=w_stddev),
bias_initializer=tf.initializers.constant(
b_constant)),
name='Deconv_%d' % i_layer))
feature_in = tf.concat([down_conv[i_layer - 1], feature_out3], 3)
else:
logits = tf.layers.conv2d(inputs=feature_out2, filters=n_classes, kernel_size=1, padding='SAME',
use_bias=False,
kernel_initializer=tf.initializers.truncated_normal(stddev=w_stddev))
prediction = conclusion(logits=logits, labels=labels, n_classes=n_classes)
return prediction, logits
def normalization(feature_in, name, epsilon=1e-12):
shape = feature_in.shape
n_channels = shape[-1]
mean, var = tf.nn.moments(feature_in, [0, 1, 2], keep_dims=True)
with tf.variable_scope(name):
gamma = tf.get_variable(name='Gamma', shape=n_channels, dtype=tf.float32,
initializer=tf.constant_initializer(1.0))
beta = tf.get_variable(name='Beta', shape=n_channels, dtype=tf.float32,
initializer=tf.constant_initializer(0.0))
return tf.nn.batch_normalization(x=feature_in, mean=mean, variance=var, offset=beta, scale=gamma,
variance_epsilon=epsilon)
def layer_normalization(feature_in, name, epsilon=1e-12):
shape = feature_in.shape
n_channels = shape[-1]
Mean, Var = tf.nn.moments(feature_in, [0, 1, 2, 3, 4], keep_dims=True)
with tf.variable_scope(name):
Gamma = tf.get_variable(name='Gamma', shape=n_channels, dtype=tf.float32,
initializer=tf.constant_initializer(1.0))
Beta = tf.get_variable(name='Beta', shape=n_channels, dtype=tf.float32,
initializer=tf.constant_initializer(0.0))
return tf.nn.batch_normalization(x=feature_in, mean=Mean, variance=Var, offset=Beta, scale=Gamma,
variance_epsilon=epsilon)
def group_normalization(feature_in, name, epsilon=1e-12):
Group = 4
shape_in = feature_in.shape
n_channels = shape_in[-1]
feature_in_reshape = tf.reshape(feature_in, shape=[shape_in[0], shape_in[1], shape_in[2], shape_in[3], Group,
shape_in[4] // Group])
Mean_reshape, Var_reshape = tf.nn.moments(feature_in_reshape, [0, 1, 2, 3, 5], keep_dims=True)
feature_in = tf.reshape((feature_in_reshape - Mean_reshape) / (Var_reshape + epsilon), shape=shape_in)
Mean = tf.constant(value=0.0, dtype=tf.float32, shape=shape_in)
Var = tf.constant(value=1.0, dtype=tf.float32, shape=shape_in)
with tf.variable_scope(name):
Gamma = tf.get_variable(name='Gamma', shape=n_channels, dtype=tf.float32,
initializer=tf.constant_initializer(1.0))
Beta = tf.get_variable(name='Beta', shape=n_channels, dtype=tf.float32,
initializer=tf.constant_initializer(0.0))
return tf.nn.batch_normalization(x=feature_in, mean=Mean, variance=Var, offset=Beta, scale=Gamma,
variance_epsilon=0)
def conclusion(logits, labels, n_classes):
foreground = tf.cast(
tf.greater_equal(tf.slice(tf.nn.softmax(logits=logits), begin=[0, 0, 0, 1], size=[-1, -1, -1, n_classes - 1]),
y=0.5), dtype=tf.int32)
background = tf.subtract(x=1, y=foreground)
classes = tf.concat(values=[background, foreground], axis=3)
foreground_gt = tf.cast(x=tf.slice(input_=labels, begin=[0, 0, 0, 1], size=[-1, -1, -1, 1]), dtype=tf.int32)
intersection = tf.bitwise.bitwise_and(foreground, foreground_gt)
union = tf.bitwise.bitwise_or(foreground, foreground_gt)
iou_1 = tf.constant(1, dtype=tf.float32)
iou_2 = tf.cast(tf.reduce_sum(intersection), dtype=tf.float32) / tf.cast(tf.reduce_sum(union), dtype=tf.float32)
iou = tf.cond(tf.equal(tf.reduce_sum(union), 0), lambda: iou_1, lambda: iou_2)
prediction = {"probabilities": tf.nn.softmax(logits=logits, name="probabilities"),
"classes": classes,
'IoU': iou,
'Or': tf.reduce_sum(union),
'And': tf.reduce_sum(intersection)}
return prediction