Skip to content

PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

License

Notifications You must be signed in to change notification settings

XLearning-SCU/2021-CVPR-Completer

Repository files navigation

Completer: Incomplete Multi-view Clustering via Contrastive Prediction

What's New

  • We support arbitrary number of views for multi-view clustering and classification tasks. See 2022-TPAMI-DCP for more details.

Intro

This repo contains the code and data of our CVPR'2021 paper Completer: Incomplete Multi-view Clustering via Contrastive Prediction and that of our IEEE TPAMI'2022 paper Dual Contrastive Prediction for Incomplete Multi-view Representation Learning.

COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction

Dual Contrastive Prediction for Incomplete Multi-view Representation Learning

Requirements

pytorch==1.2.0

numpy>=1.19.1

scikit-learn>=0.23.2

munkres>=1.1.4

Configuration

The hyper-parameters, the training options (including the missing rate) are defined in configure.py.

Datasets

The Caltech101-20, LandUse-21, and Scene-15 datasets are placed in "data" folder. The NoisyMNIST dataset could be downloaded from cloud.

Usage

The code includes:

  • an example implementation of the model,
  • an example clustering task for different missing rates.
python run.py --dataset 0 --devices 0 --print_num 100 --test_time 5

You can get the following output:

Epoch : 100/500 ===> Reconstruction loss = 0.2819===> Reconstruction loss = 0.0320 ===> Dual prediction loss = 0.0199  ===> Contrastive loss = -4.4813e+02 ===> Loss = -4.4810e+02
view_concat {'kmeans': {'AMI': 0.5969, 'NMI': 0.6106, 'ARI': 0.6044, 'accuracy': 0.5813, 'precision': 0.4408, 'recall': 0.3835, 'f_measure': 0.3921}}
Epoch : 200/500 ===> Reconstruction loss = 0.2590===> Reconstruction loss = 0.0221 ===> Dual prediction loss = 0.0016  ===> Contrastive loss = -4.4987e+02 ===> Loss = -4.4984e+02
view_concat {'kmeans': {'AMI': 0.6575, 'NMI': 0.6691, 'ARI': 0.6974, 'accuracy': 0.6593, 'precision': 0.4551, 'recall': 0.4222, 'f_measure': 0.4096}}
Epoch : 300/500 ===> Reconstruction loss = 0.2450===> Reconstruction loss = 0.0207 ===> Dual prediction loss = 0.0011  ===> Contrastive loss = -4.5115e+02 ===> Loss = -4.5112e+02
view_concat {'kmeans': {'AMI': 0.6875, 'NMI': 0.6982, 'ARI': 0.8679, 'accuracy': 0.7439, 'precision': 0.4586, 'recall': 0.444, 'f_measure': 0.4217}}
Epoch : 400/500 ===> Reconstruction loss = 0.2391===> Reconstruction loss = 0.0210 ===> Dual prediction loss = 0.0007  ===> Contrastive loss = -4.5013e+02 ===> Loss = -4.5010e+02
view_concat {'kmeans': {'AMI': 0.692, 'NMI': 0.7027, 'ARI': 0.8736, 'accuracy': 0.7456, 'precision': 0.4601, 'recall': 0.4451, 'f_measure': 0.4257}}
Epoch : 500/500 ===> Reconstruction loss = 0.2281===> Reconstruction loss = 0.0187 ===> Dual prediction loss = 0.0008  ===> Contrastive loss = -4.5018e+02 ===> Loss = -4.5016e+02
view_concat {'kmeans': {'AMI': 0.6912, 'NMI': 0.7019, 'ARI': 0.8707, 'accuracy': 0.7464, 'precision': 0.4657, 'recall': 0.4464, 'f_measure': 0.4265}}

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{lin2021completer,
   title={COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction},
   author={Lin, Yijie and Gou, Yuanbiao and Liu, Zitao and Li, Boyun and Lv, Jiancheng and Peng, Xi},
   booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   month={June},
   year={2021}
}

About

PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages