Skip to content

Commit

Permalink
Fix TFP Version Incompatibility with Transformed Distributions (#64)
Browse files Browse the repository at this point in the history
* Replaced SquareRoot bijector Transformation with builtin `tfb.Power`

* Remove py36 support
  • Loading branch information
WillianFuks authored Oct 7, 2022
1 parent d605737 commit 9aa7b74
Show file tree
Hide file tree
Showing 7 changed files with 21 additions and 140 deletions.
6 changes: 1 addition & 5 deletions .github/workflows/run-CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -6,16 +6,12 @@ jobs:
strategy:
matrix:
os: [ubuntu-latest, macos-latest, windows-latest]
python: [3.6, 3.7, 3.8, 3.9]
python: [3.7, 3.8, 3.9]
exclude:
- os: macos-latest
python: 3.6
- os: macos-latest
python: 3.7
- os: macos-latest
python: 3.8
- os: windows-latest
python: 3.6
- os: windows-latest
python: 3.7
- os: windows-latest
Expand Down
2 changes: 1 addition & 1 deletion causalimpact/__version__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,4 +13,4 @@
# limitations under the License.


__version__ = '0.0.11'
__version__ = '0.0.12-rc.0'
105 changes: 2 additions & 103 deletions causalimpact/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -226,8 +226,8 @@ def build_bijector(dist: tfd.Distribution) -> tfd.Distribution:
new_dist: tfd.Distribution
New distribution given by `y = G(X)`.
"""
bijector = SquareRootBijector()
new_dist = tfd.TransformedDistribution(dist, bijector)
sqrt_bi = tfb.Power(.5)
new_dist = tfd.TransformedDistribution(dist, sqrt_bi)
return new_dist


Expand Down Expand Up @@ -443,104 +443,3 @@ def build_posterior_dist(
parameter_samples=parameter_samples,
num_steps_forecast=num_steps_forecast
)


class SquareRootBijector(tfb.Bijector):
"""
Compute `Y = g(X) = X ** (1 / 2) which transforms variance into standard deviation.
Main reference for building this bijector is the original [PowerTransform](https://github.com/tensorflow/probability/blob/v0.11.1/tensorflow_probability/python/bijectors/power_transform.py) # noqa: E501
"""
def __init__(
self,
validate_args: bool = False,
name: str = 'square_root_bijector'
):
"""
Args
----
validate_args: bool
Indicates whether arguments should be checked for correctness.
name: str
Name given to ops managed by this object.
"""
# Without these `parameters` the code won't be compatible with future versions
# of tfp:
# https://github.com/tensorflow/probability/issues/1202
parameters = dict(locals())
with tf.name_scope(name) as name:
super().__init__(
forward_min_event_ndims=0,
validate_args=validate_args,
parameters=parameters,
name=name)

def _forward(self, x: Union[float, np.array, tf.Tensor]) -> tf.Tensor:
"""
Implements the forward pass `G` as given by `Y = G(X)`. In this case, it's a
simple square root of X.
Args
----
x: Union[float, np.array, tf.Tensor])
Variable `X` to receive the transformation.
Returns
-------
X: tf.Tensor
Square root of `x`.
"""
return tf.sqrt(x)

def _inverse(self, y: Union[float, np.array, tf.Tensor]) -> tf.Tensor:
"""
Implements G^-1(y).
Args
----
y: Union[float, np.array, tf.Tensor]
Values to be transformed back. In this case, they will be squared.
Returns
-------
y: tf.Tensor
Squared `y`.
"""
return tf.square(y)

def _inverse_log_det_jacobian(self, y: tf.Tensor) -> tf.Tensor:
"""
When transforming from `P(X)` to `P(Y)` it's necessary to compute the log of the
determinant of the Jacobian matrix for each correspondent function `G` which
accounts for the volumetric transformations on each domain.
The inverse log determinant is given by:
`ln(|J(G^-1(Y)|) = ln(|J(Y ** 2)|) = ln(|2 * Y|) = ln(2 * Y)`
Args
----
y: tf.Tensor
Returns
-------
tf.Tensor
"""
return tf.math.log(2 * y)

def _forward_log_det_jacobian(self, x: tf.Tensor) -> tf.Tensor:
"""
Computes the volumetric change when moving forward from `P(X)` to `P(Y)`, given
by:
`ln(|J(G(X))|) = ln(|J(sqrt(X))|) = ln(|(1 / 2) * X ** (-1 / 2)|) =
= (-1 / 2) * ln(4.0 * X)
Args
----
x: tf.Tensor
Returns
-------
tf.tensor
"""
return -0.5 * tf.math.log(4.0 * x)
6 changes: 3 additions & 3 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,9 +47,9 @@

install_requires = [
'jinja2',
'pandas <= 1.3.5',
'tensorflow',
'tensorflow-probability == 0.14.0',
'pandas >= 1.3.5',
'tensorflow >= 2.10',
'tensorflow-probability >= 0.18',
'matplotlib',
]
tests_require = [
Expand Down
4 changes: 4 additions & 0 deletions tests/test_main.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,10 @@
from causalimpact import CausalImpact
from causalimpact.misc import standardize

seed = 123
tf.random.set_seed(seed)
np.random.seed(seed)


def test_default_causal_cto(rand_data, pre_int_period, post_int_period):
ci = CausalImpact(rand_data, pre_int_period, post_int_period)
Expand Down
29 changes: 6 additions & 23 deletions tests/test_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -153,23 +153,6 @@ def test_check_input_model():
cimodel.check_input_model(model, pre_data, post_data)


def test_SquareRootBijector():
bijector = cimodel.SquareRootBijector()
assert bijector.name == 'square_root_bijector'
x = np.array([3.0, 4.0])
y = np.array([2.0, 3.0])
np.testing.assert_almost_equal(bijector.forward(x), np.sqrt(x))
np.testing.assert_almost_equal(bijector.inverse(y), np.square(y))
np.testing.assert_almost_equal(
bijector.forward_log_det_jacobian(x, event_ndims=0),
-.5 * np.log(4.0 * x)
)
np.testing.assert_almost_equal(
bijector.inverse_log_det_jacobian(y, event_ndims=0),
np.log(2 * y)
)


def test_build_default_model(rand_data, pre_int_period, post_int_period):
prior_level_sd = 0.01
pre_data = pd.DataFrame(rand_data.iloc[pre_int_period[0]: pre_int_period[1], 0])
Expand All @@ -180,11 +163,11 @@ def test_build_default_model(rand_data, pre_int_period, post_int_period):
assert isinstance(model, tfp.sts.Sum)
obs_prior = model.parameters[0].prior
assert isinstance(obs_prior, tfd.TransformedDistribution)
assert isinstance(obs_prior.bijector, cimodel.SquareRootBijector)
assert isinstance(obs_prior.bijector, tfp.bijectors.Power)
assert isinstance(obs_prior.distribution, tfd.InverseGamma)
level_prior = model.parameters[1].prior
assert isinstance(level_prior, tfd.TransformedDistribution)
assert isinstance(level_prior.bijector, cimodel.SquareRootBijector)
assert isinstance(level_prior.bijector, tfp.bijectors.Power)
assert isinstance(level_prior.distribution, tfd.InverseGamma)
assert level_prior.dtype == tf.float32

Expand All @@ -196,11 +179,11 @@ def test_build_default_model(rand_data, pre_int_period, post_int_period):
assert isinstance(model, tfp.sts.Sum)
obs_prior = model.parameters[0].prior
assert isinstance(obs_prior, tfd.TransformedDistribution)
assert isinstance(obs_prior.bijector, cimodel.SquareRootBijector)
assert isinstance(obs_prior.bijector, tfp.bijectors.Power)
assert isinstance(obs_prior.distribution, tfd.InverseGamma)
level_prior = model.parameters[1].prior
assert isinstance(level_prior, tfd.TransformedDistribution)
assert isinstance(level_prior.bijector, cimodel.SquareRootBijector)
assert isinstance(level_prior.bijector, tfp.bijectors.Power)
assert isinstance(level_prior.distribution, tfd.InverseGamma)
assert level_prior.dtype == tf.float32
linear = model.components[1]
Expand All @@ -218,12 +201,12 @@ def test_build_default_model(rand_data, pre_int_period, post_int_period):
assert isinstance(model, tfp.sts.Sum)
obs_prior = model.parameters[0].prior
assert isinstance(obs_prior, tfd.TransformedDistribution)
assert isinstance(obs_prior.bijector, cimodel.SquareRootBijector)
assert isinstance(obs_prior.bijector, tfp.bijectors.Power)
assert isinstance(obs_prior.distribution, tfd.InverseGamma)
assert obs_prior.dtype == tf.float32
level_prior = model.parameters[1].prior
assert isinstance(level_prior, tfd.TransformedDistribution)
assert isinstance(level_prior.bijector, cimodel.SquareRootBijector)
assert isinstance(level_prior.bijector, tfp.bijectors.Power)
assert isinstance(level_prior.distribution, tfd.InverseGamma)
assert level_prior.dtype == tf.float32
linear = model.components[1]
Expand Down
9 changes: 4 additions & 5 deletions tox.ini
Original file line number Diff line number Diff line change
@@ -1,11 +1,10 @@
[tox]
envlist =
py{36, 37, 38, 39}-{linux,macos,windows}
py{37, 38, 39}-{linux,macos,windows}
gh-actions-coveralls

[gh-actions]
python =
3.6: py36
3.7: py37
3.8: py38
3.9: py39, lint, isort-check, coverage
Expand All @@ -26,7 +25,7 @@ deps =
-rtest-requirements.txt
commands =
# To run specific test, simply run `tox -e py39 -- tests/test_data.py -k test_input_data`
python -m pytest {posargs: tests/} -m "not slow" -n 2 -x
python -m pytest {posargs: tests/} -m "not slow" -n 4 -x

[testenv:isort]
deps =
Expand All @@ -53,13 +52,13 @@ deps =
{[testenv]deps}
pytest-cov
commands =
python -m pytest tests --cov-report html --cov causalimpact -n 2 -x
python -m pytest tests --cov-report html --cov causalimpact -n 4 -x

[testenv:GHA-coverage]
deps =
{[testenv]deps}
pytest-cov
coverage
commands =
python -m pytest tests --cov-report xml --cov causalimpact -n 2 -x
python -m pytest tests --cov-report xml --cov causalimpact -n 4 -x
coverage lcov

0 comments on commit 9aa7b74

Please sign in to comment.