Skip to content

Built an optimal model based on a statistical analysis with the tools available. This model is used to estimate the best selling price for a client’s Boston home. Project 1 of the Udacity Machine Learning Nanodegree Program - details included.

Notifications You must be signed in to change notification settings

WilliamY97/Boston-House-Pricing-Prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Boston-House-Pricing-Prediction

This Project Has Been Confirmed As Successful By A Udacity Reviewer.

What I Did

In this project, I applied basic machine learning concepts on data collected for housing prices in the Boston, Massachusetts area to predict the selling price of a new home. I first used the NumPy libary to analyze the data to obtain important features and descriptive statistics about the dataset. Next, I split the data into testing and training subsets, and determine a suitable performance metric for this problem. I analyzed performance graphs for a learning algorithm with varying parameters and training set sizes. Finally, I tested this model on a new sample and compare the predicted selling price to my statistics. The result was less than one standard deviation away from the mean.

What I Learned

From this project I was acquainted to working with datasets in Python and applying basic machine learning techniques using NumPy and Scikit-Learn.

Things I learned from this project:

  • How to use NumPy to investigate the latent features of a dataset.
  • How to analyze various learning performance plots for variance and bias.
  • How to determine the best-guess model for predictions from unseen data.
  • How to evaluate a model’s performance on unseen data using previous data.
  • Model fitting, data train & test split, cross-validation, & parameter optimization with grid search.

alt text

About

Built an optimal model based on a statistical analysis with the tools available. This model is used to estimate the best selling price for a client’s Boston home. Project 1 of the Udacity Machine Learning Nanodegree Program - details included.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published