Skip to content

Commit

Permalink
Merge pull request PaddlePaddle#189 from Liyulingyue/gradio
Browse files Browse the repository at this point in the history
【PaddlePaddle Hackathon 5th】No.81 Add Text2Image & Autolabel Gradio
  • Loading branch information
LokeZhou authored Oct 20, 2023
2 parents 737ca99 + 91c1edf commit 5071474
Show file tree
Hide file tree
Showing 2 changed files with 241 additions and 0 deletions.
187 changes: 187 additions & 0 deletions applications/gradio_autolable.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
from paddlemix.appflow import Appflow
from ppdiffusers.utils import load_image
import paddle
import cv2

import os
import json
from zipfile import ZipFile
import zipfile
import numpy as np
from PIL import Image, ImageDraw
import gradio as gr
import traceback
import math
import tempfile


task = Appflow(app="auto_label",
models=["paddlemix/blip2-caption-opt2.7b","GroundingDino/groundingdino-swint-ogc","Sam/SamVitH-1024"])


def auto_label(img, prompt):
result = task(image=img,blip2_prompt = prompt)
return result


def result2json(result, filename):
label_data = {'version': '0.0.0',
'flags': {} ,
'shapes': [],
'imagePath': filename,
'imageHeight': result['image'].size[1],
'imageWidth': result['image'].size[0]}

for i in range(len(result['labels'])):
# label去掉末尾的置信度
label = result['labels'][i]
spl_idx = -1
for j in range(len(label)):
if label[j] == '(':
spl_idx = j
if spl_idx == -1:
label = label
else:
label = label[:spl_idx]

# 增加bbox
rect = result['boxes'][i].tolist()
xmin, ymin, xmax, ymax = rect
label_data['shapes'].append(
{'label': label,
'points': [[xmin, ymin],[xmax, ymax]],
'group_id': None,
'shape_type': 'rectangle',
'flags': {}
}
)

# 记录polygen
seg_mask = result['seg_masks'][i].numpy()[0]
mask_img = seg_mask.astype('uint8')*255
contours, _ = cv2.findContours(mask_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
points = []
for contour in contours:
for point in contour:
points.append(point[0].tolist())

# 增加polygen
rect = result['boxes'][i]
xmin, ymin, xmax, ymax = rect
label_data['shapes'].append(
{'label': label,
'points': points,
'group_id': None,
'shape_type': 'polygon',
'flags': {}
}
)

return label_data


def generate_mask(img, result_masks):
divide_part = int(255/(math.ceil(len(result_masks)/3)+1))
np_img = np.array(img)
for i in range(len(result_masks)):
color = [0,0,0]
c = i%3
p = i//3+1
color[c] = divide_part*p
mask = result_masks[i]
M = mask.numpy()[0]
np_img[M] = color
print(color)
img = Image.fromarray(np_img)
return img


def al_fun(img, prompt):
img = Image.fromarray(img.astype('uint8')).convert('RGB')
result = auto_label(img, prompt)
label_data = result2json(result, "tmpimg")
# Draw BBox
draw = ImageDraw.Draw(img)
for i in range(len(result['boxes'])):
rect = result['boxes'][i].tolist()
draw.rectangle(rect, width=10)
# Draw Mask
mask_img = generate_mask(result['image'], result['seg_masks'])
# Write File
labeled_file = os.path.join(tmpdir,'labeled_date.json')
with open(labeled_file,'w') as f:
json.dump(label_data, f, indent=4)
return img, mask_img, labeled_file


def al_file_fun(file_in, prompt):
out_zip_file = os.path.join(tmpdir, "labeled.zip")
with ZipFile(out_zip_file, "w") as zipObj:
for _, imgname in enumerate(file_in):
image_pil = Image.open(imgname.name)
result = auto_label(image_pil, prompt)
label_data = result2json(result, imgname.name.split("/")[-1])
labeled_file = os.path.join(tmpdir,imgname.name.split("/")[-1]+'.josn')
with open(labeled_file,'w') as f:
json.dump(label_data, f, indent=4)
zipObj.write(labeled_file)
return out_zip_file


def al_zip_fun(zip_in, prompt):
for _, zipname in enumerate(zip_in):
with open('test.txt', 'a') as f:
f.write(zipname.name+'\n')
f.write(zipname.name+'\n')
zipfile.ZipFile(zipname.name).extractall(tmpdir)
with open('test.txt', 'a') as f:
f.write('\n after extract \n')
out_zip_file = os.path.join(tmpdir, "labeled.zip")
with ZipFile(out_zip_file, "w") as zipObj:
for root, _, files in os.walk(tmpdir, topdown=False):
for name in files:
if name.split('.')[-1] in ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG']:
img_path = os.path.join(root, name)
json_path = os.path.join(root, name+'.json')

image_pil = Image.open(img_path)
result = auto_label(image_pil, prompt)
label_data = result2json(result, img_path)
with open(json_path,'w') as f:
json.dump(label_data, f, indent=4)
zipObj.write(json_path)
os.remove(img_path)
return out_zip_file


with gr.Blocks() as demo:
gr.Markdown("# 自动标注(AutoLabel)")
with gr.Tab("单张图片标注"):
with gr.Row():
al_image_in = gr.Image(label = "输入图片")
al_image_out1 = gr.Image(label = "BBox标注图片")
al_image_out2 = gr.Image(label = "Mask标注图片")
al_text_in = gr.Text(label = "Prompt", value="describe the image")
al_file_out_ = gr.File(label = "标注文件")
al_button = gr.Button()
al_button.click(fn=al_fun, inputs = [al_image_in, al_text_in], outputs = [al_image_out1, al_image_out2, al_file_out_])
with gr.Tab("上传多张图片批量标注"):
with gr.Row():
al_file_in = gr.Files(label = "上传多张图片", file_types=['.jpg', '.png', '.jpeg', '.JPG', '.PNG', '.JPEG'])
al_file_out = gr.File(label = "标注结果")
al_file_text_in = gr.Text(label = "Prompt", value="describe the image")
al_file_button = gr.Button()
al_file_button.click(fn=al_file_fun, inputs = [al_file_in, al_file_text_in], outputs = [al_file_out])
with gr.Tab("上传压缩包批量标注"):
with gr.Row():
al_zip_in = gr.Files(label = "上传压缩包", file_types=['.zip'])
al_zip_out = gr.File(label = "标注结果")
al_zip_text_in = gr.Text(label = "Prompt", value="describe the image")
al_zip_button = gr.Button()
al_zip_button.click(fn=al_zip_fun, inputs = [al_zip_in, al_zip_text_in], outputs = [al_zip_out])


# for download file, use the tempfile
global tmpdir
with tempfile.TemporaryDirectory(dir='.') as tmpdir:
demo.launch()
54 changes: 54 additions & 0 deletions applications/gradio_text2image.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
from paddlemix.appflow import Appflow
from ppdiffusers.utils import load_image
import paddle
import imageio

from PIL import Image
import gradio as gr
import traceback

# upscaling
def ups_fun(low_res_img, prompt):
low_res_img = Image.fromarray(low_res_img.astype('uint8')).convert('RGB')
app = Appflow(app='image2image_text_guided_upscaling',models=['stabilityai/stable-diffusion-x4-upscaler'])
image = app(prompt=prompt,image=low_res_img)['result']
return image

# text_guided_generation
def tge_fun(image, prompt_pos, prompt_neg):
image = Image.fromarray(image.astype('uint8')).convert('RGB')
app = Appflow(app='image2image_text_guided_generation',models=['Linaqruf/anything-v3.0'])
image = app(prompt=prompt_pos,negative_prompt=prompt_neg,image=image)['result']
return image

# video_generation
def vge_fun(prompt):
app = Appflow(app='text_to_video_generation',models=['damo-vilab/text-to-video-ms-1.7b'])
video_frames = app(prompt=prompt,num_inference_steps=25)['result']
imageio.mimsave("gen_video.gif", video_frames, duration=8)
return "gen_video.gif"

with gr.Blocks() as demo:
gr.Markdown("# Appflow应用:text2image")
with gr.Tab("文本引导的图像放大"):
with gr.Row():
ups_image_in = gr.Image(label = "输入图片")
ups_image_out = gr.Image(label = "输出图片")
ups_text_in = gr.Text(label = "Prompt")
ups_button = gr.Button()
ups_button.click(fn=ups_fun, inputs = [ups_image_in, ups_text_in], outputs = [ups_image_out])
with gr.Tab("文本引导的图像变换"):
with gr.Row():
tge_image_in = gr.Image(label = "输入图片")
tge_image_out = gr.Image(label = "输出图片")
tge_text_pos_in = gr.Text(label = "Positive Prompt")
tge_text_neg_in = gr.Text(label = "Negative Prompt")
tge_button = gr.Button()
tge_button.click(fn=tge_fun, inputs = [tge_image_in, tge_text_pos_in, tge_text_neg_in], outputs = [tge_image_out])
with gr.Tab("文本条件的视频生成"):
vge_text_in = gr.Text(label = "Prompt")
vge_video_out = gr.Video(label = "输出视频")
vge_button = gr.Button()
vge_button.click(fn=vge_fun, inputs = [vge_text_in], outputs = [vge_video_out])

demo.launch()

0 comments on commit 5071474

Please sign in to comment.