Skip to content

Commit

Permalink
[AIRFLOW-2524] Add Amazon SageMaker Tuning (apache#3751)
Browse files Browse the repository at this point in the history
Add SageMaker tuning Operator and sensor
Co-authored-by: srrajeev-aws <[email protected]>
  • Loading branch information
troychen728 authored and galak75 committed Nov 23, 2018
1 parent 058be62 commit 3752828
Show file tree
Hide file tree
Showing 6 changed files with 505 additions and 10 deletions.
24 changes: 19 additions & 5 deletions airflow/contrib/hooks/sagemaker_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,8 +59,13 @@ def check_for_url(self, s3url):
if not s3hook.check_for_bucket(bucket_name=bucket):
raise AirflowException(
"The input S3 Bucket {} does not exist ".format(bucket))
if not s3hook.check_for_key(key=key, bucket_name=bucket):
raise AirflowException("The input S3 Key {} does not exist in the Bucket"
if key and not s3hook.check_for_key(key=key, bucket_name=bucket)\
and not s3hook.check_for_prefix(
prefix=key, bucket_name=bucket, delimiter='/'):
# check if s3 key exists in the case user provides a single file
# or if s3 prefix exists in the case user provides a prefix for files
raise AirflowException("The input S3 Key "
"or Prefix {} does not exist in the Bucket {}"
.format(s3url, bucket))
return True

Expand Down Expand Up @@ -196,11 +201,13 @@ def create_training_job(self, training_job_config, wait_for_completion=True):
training_job_config['TrainingJobName'])
return response

def create_tuning_job(self, tuning_job_config):
def create_tuning_job(self, tuning_job_config, wait_for_completion=True):
"""
Create a tuning job
:param tuning_job_config: the config for tuning
:type tuning_job_config: dict
:param wait_for_completion: if the program should keep running until job finishes
:param wait_for_completion: bool
:return: A dict that contains ARN of the tuning job.
"""
if self.use_db_config:
Expand All @@ -216,13 +223,20 @@ def create_tuning_job(self, tuning_job_config):

self.check_valid_tuning_input(tuning_job_config)

return self.conn.create_hyper_parameter_tuning_job(
response = self.conn.create_hyper_parameter_tuning_job(
**tuning_job_config)
if wait_for_completion:
self.check_status(['InProgress', 'Stopping', 'Stopped'],
['Failed'],
'HyperParameterTuningJobStatus',
self.describe_tuning_job,
tuning_job_config['HyperParameterTuningJobName'])
return response

def describe_training_job(self, training_job_name):
"""
:param training_job_name: the name of the training job
:type train_job_name: string
:type training_job_name: string
Return the training job info associated with the current job_name
:return: A dict contains all the training job info
"""
Expand Down
121 changes: 121 additions & 0 deletions airflow/contrib/operators/sagemaker_create_tuning_job_operator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

from airflow.contrib.hooks.sagemaker_hook import SageMakerHook
from airflow.models import BaseOperator
from airflow.utils.decorators import apply_defaults
from airflow.exceptions import AirflowException


class SageMakerCreateTuningJobOperator(BaseOperator):

"""
Initiate a SageMaker HyperParameter Tuning Job
This operator returns The ARN of the model created in Amazon SageMaker
:param sagemaker_conn_id: The SageMaker connection ID to use.
:type sagemaker_conn_id: string
:param region_name: The AWS region_name
:type region_name: string
:param tuning_job_config:
The configuration necessary to start a tuning job (templated)
:type tuning_job_config: dict
:param use_db_config: Whether or not to use db config
associated with sagemaker_conn_id.
If set to true, will automatically update the tuning config
with what's in db, so the db config doesn't need to
included everything, but what's there does replace the ones
in the tuning_job_config, so be careful
:type use_db_config: bool
:param wait_for_completion: if the operator should block
until tuning job finishes
:type wait_for_completion: bool
:param check_interval: if wait is set to be true, this is the time interval
which the operator will check the status of the tuning job
:type check_interval: int
:param max_ingestion_time: if wait is set to be true, the operator will fail
if the tuning job hasn't finish within the max_ingestion_time
(Caution: be careful to set this parameters because tuning can take very long)
:type max_ingestion_time: int
:param aws_conn_id: The AWS connection ID to use.
:type aws_conn_id: string
**Example**:
The following operator would start a tuning job when executed
sagemaker_tuning =
SageMakerCreateTuningJobOperator(
task_id='sagemaker_tuning',
sagemaker_conn_id='sagemaker_customers_conn',
tuning_job_config=config,
check_interval=2,
max_ingestion_time=3600,
aws_conn_id='aws_customers_conn',
)
"""

template_fields = ['tuning_job_config']
template_ext = ()
ui_color = '#ededed'

@apply_defaults
def __init__(self,
sagemaker_conn_id=None,
region_name=None,
tuning_job_config=None,
use_db_config=False,
wait_for_completion=True,
check_interval=5,
max_ingestion_time=None,
*args, **kwargs):
super(SageMakerCreateTuningJobOperator, self)\
.__init__(*args, **kwargs)

self.sagemaker_conn_id = sagemaker_conn_id
self.region_name = region_name
self.tuning_job_config = tuning_job_config
self.use_db_config = use_db_config
self.wait_for_completion = wait_for_completion
self.check_interval = check_interval
self.max_ingestion_time = max_ingestion_time

def execute(self, context):
sagemaker = SageMakerHook(sagemaker_conn_id=self.sagemaker_conn_id,
region_name=self.region_name,
use_db_config=self.use_db_config,
check_interval=self.check_interval,
max_ingestion_time=self.max_ingestion_time
)

self.log.info(
"Creating SageMaker Hyper Parameter Tunning Job %s"
% self.tuning_job_config['HyperParameterTuningJobName']
)

response = sagemaker.create_tuning_job(
self.tuning_job_config,
wait_for_completion=self.wait_for_completion
)
if not response['ResponseMetadata']['HTTPStatusCode'] \
== 200:
raise AirflowException(
"Sagemaker Tuning Job creation failed: %s" % response)
else:
return response
69 changes: 69 additions & 0 deletions airflow/contrib/sensors/sagemaker_tuning_sensor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

from airflow.contrib.hooks.sagemaker_hook import SageMakerHook
from airflow.contrib.sensors.sagemaker_base_sensor import SageMakerBaseSensor
from airflow.utils.decorators import apply_defaults


class SageMakerTuningSensor(SageMakerBaseSensor):
"""
Asks for the state of the tuning state until it reaches a terminal state.
The sensor will error if the job errors, throwing a AirflowException
containing the failure reason.
:param job_name: job_name of the tuning instance to check the state of
:type job_name: string
:param region_name: The AWS region_name
:type region_name: string
"""

template_fields = ['job_name']
template_ext = ()

@apply_defaults
def __init__(self,
job_name,
region_name=None,
*args,
**kwargs):
super(SageMakerTuningSensor, self).__init__(*args, **kwargs)
self.job_name = job_name
self.region_name = region_name

def non_terminal_states(self):
return ['InProgress', 'Stopping', 'Stopped']

def failed_states(self):
return ['Failed']

def get_sagemaker_response(self):
sagemaker = SageMakerHook(
aws_conn_id=self.aws_conn_id,
region_name=self.region_name
)

self.log.info('Poking Sagemaker Tuning Job %s', self.job_name)
return sagemaker.describe_tuning_job(self.job_name)

def get_failed_reason_from_response(self, response):
return response['FailureReason']

def state_from_response(self, response):
return response['HyperParameterTuningJobStatus']
18 changes: 13 additions & 5 deletions tests/contrib/hooks/test_sagemaker_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,17 +212,23 @@ def setUp(self):
@mock.patch.object(SageMakerHook, 'get_conn')
@mock.patch.object(S3Hook, 'check_for_key')
@mock.patch.object(S3Hook, 'check_for_bucket')
@mock.patch.object(S3Hook, 'check_for_prefix')
def test_check_for_url(self,
mock_check_bucket, mock_check_key, mock_client):
mock_check_prefix,
mock_check_bucket,
mock_check_key,
mock_client):
mock_client.return_value = None
hook = SageMakerHook()
mock_check_bucket.side_effect = [False, True, True]
mock_check_key.side_effect = [False, True]
mock_check_bucket.side_effect = [False, True, True, True]
mock_check_key.side_effect = [False, True, False]
mock_check_prefix.side_effect = [False, True, True]
self.assertRaises(AirflowException,
hook.check_for_url, data_url)
self.assertRaises(AirflowException,
hook.check_for_url, data_url)
self.assertEqual(hook.check_for_url(data_url), True)
self.assertEqual(hook.check_for_url(data_url), True)

@mock.patch.object(SageMakerHook, 'get_conn')
@mock.patch.object(SageMakerHook, 'check_for_url')
Expand Down Expand Up @@ -362,7 +368,8 @@ def test_create_tuning_job(self, mock_client, mock_check_tuning):
mock_session.configure_mock(**attrs)
mock_client.return_value = mock_session
hook = SageMakerHook(sagemaker_conn_id='sagemaker_test_conn_id')
response = hook.create_tuning_job(create_tuning_params)
response = hook.create_tuning_job(create_tuning_params,
wait_for_completion=False)
mock_session.create_hyper_parameter_tuning_job.\
assert_called_once_with(**create_tuning_params)
self.assertEqual(response, test_arn_return)
Expand All @@ -378,7 +385,8 @@ def test_create_tuning_job_db_config(self, mock_client, mock_check_tuning):
mock_client.return_value = mock_session
hook = SageMakerHook(sagemaker_conn_id='sagemaker_test_conn_id',
use_db_config=True)
response = hook.create_tuning_job(create_tuning_params)
response = hook.create_tuning_job(create_tuning_params,
wait_for_completion=False)
updated_config = copy.deepcopy(create_tuning_params)
updated_config.update(db_config)
mock_session.create_hyper_parameter_tuning_job. \
Expand Down
Loading

0 comments on commit 3752828

Please sign in to comment.