2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection
This repo is the official implementation of our paper:
2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection
Mikhail Kennerley, Jian-Gang Wang, Bharadwaj Veeravalli, Robby T. Tan
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023
[Paper]
- Python ≥ 3.6
- PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation.
- Detectron2 == 0.6
-
Download the datasets (BDD100K / SHIFT)
-
Split BDD100K and SHIFT into day and night labels using dataset information. Convert BDD100K and SHIFT labels to coco format. Alternatively, you can download our split (https://www.dropbox.com/scl/fo/258uzp6i0dz17zsj234r6/h?dl=0&rlkey=kb6brfk1oqc1ddsa3ulz8v9ei).
-
Organize the dataset with the following format
2pcnet/
└── datasets/
└── bdd100k/
├── train/
├── img00001.jpg
├──...
├── val/
├── img00003.jpg
├──...
├── train_day.json
├── train_night.json
├── val_night.json
└── shift/
├── train/
├── folder1
├──...
├── val/
├── folder1
├──...
├── train_day.json
├── train_night.json
├── val_night.json
python train_net.py \
--num-gpus 4 \
--config configs/faster_rcnn_R50_bdd100k.yaml\
OUTPUT_DIR output/bdd100k
python train_net.py \
--resume \
--num-gpus 4 \
--config configs/faster_rcnn_R50_bdd100k.yaml MODEL.WEIGHTS <your weight>.pth
python train_net.py \
--eval-only \
--config configs/faster_rcnn_R50_bdd100k.yaml \
MODEL.WEIGHTS <your weight>.pth
Dataset | Model Link |
---|---|
BDD100K | https://www.dropbox.com/s/812l6wdbonabp9k/model_final.pth?dl=0 |
SHIFT | Coming soon... |
If you use 2PCNet in your research or wish to refer to the results published in our paper, please use the following BibTeX entry:
@inproceedings{kennerley2023tpcnet,
title={2PCNet: Two-Phase Consistency Training for Day-to-Night Unsupervised Domain Adaptive Object Detection},
author={Mikhail Kennerley, Jian-Gang Wang, Bharadwaj Veeravalli, Robby T. Tan},
booktitle={2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2023},
}
Code is adapted from Detectron2 and Adaptive Teacher.