Skip to content

Commit

Permalink
Negation reverses strict inequality on (#1276)
Browse files Browse the repository at this point in the history
Co-authored-by: Egbert Rijke <[email protected]>
  • Loading branch information
lowasser and EgbertRijke authored Feb 5, 2025
1 parent 260f8ac commit eb58aa1
Showing 1 changed file with 23 additions and 0 deletions.
23 changes: 23 additions & 0 deletions src/real-numbers/strict-inequality-real-numbers.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,12 +17,15 @@ open import foundation.coproduct-types
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.existential-quantification
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.negation
open import foundation.propositions
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import real-numbers.dedekind-real-numbers
open import real-numbers.negation-real-numbers
open import real-numbers.rational-real-numbers
```

Expand Down Expand Up @@ -177,6 +180,26 @@ module _
( is-inhabited-upper-cut-ℝ x)
```

### Negation reverses the strict ordering of real numbers

```agda
module _
{l1 l2 : Level}
(x : ℝ l1)
(y : ℝ l2)
where

reverses-order-neg-ℝ : le-ℝ x y le-ℝ (neg-ℝ y) (neg-ℝ x)
reverses-order-neg-ℝ =
elim-exists
( le-ℝ-Prop (neg-ℝ y) (neg-ℝ x))
( λ p (p-in-ux , p-in-ly)
intro-exists
( neg-ℚ p)
( tr (is-in-lower-cut-ℝ y) (inv (neg-neg-ℚ p)) p-in-ly ,
tr (is-in-upper-cut-ℝ x) (inv (neg-neg-ℚ p)) p-in-ux))
```

## References

{­{#bibliography}}

0 comments on commit eb58aa1

Please sign in to comment.