Skip to content
forked from JianshuZhang/TAP

Track, Attend and Parse for Online Handwritten Mathematical Expression Recognition

Notifications You must be signed in to change notification settings

UngQuangHuy/TAP

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TAP

This repository contains the source code for TAP introduced in the following papers:

Here, v1 employs the coverage based spatial attention model, v2 employs the guided hybrid attention model.

Requirements

Citation

If you find TAP useful in your research, please consider citing:

@inproceedings{zhang2017gru,
  title={A GRU-based Encoder-Decoder Approach with Attention for Online Handwritten Mathematical Expression Recognition},
  author={Zhang, Jianshu and Du, Jun and Dai, Lirong},
  booktitle={Document Analysis and Recognition (ICDAR), 2017 14th International Conference on},
  year={2017},
  organization={IEEE}
}

Description

  • Train TAP without using weightnoise and save the best model in terms of WER

    $ bash train.sh
    
  • Anneal the best model by using weightnoise and save the new best model

    $ bash train_weightnoise.sh
    
  • Reload the new best model and generate the testing latex strings

    $ bash test.sh
    

Contact

xysszjs at mail.ustc.edu.cn
West campus of University of Science and Technology of China
Any discussions, suggestions and questions are welcome!

About

Track, Attend and Parse for Online Handwritten Mathematical Expression Recognition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.0%
  • Shell 1.0%