Skip to content

Commit

Permalink
Use of SIMD computation in CRHMC walk [fixed] (GeomScale#286)
Browse files Browse the repository at this point in the history
  • Loading branch information
iakoviid authored and TolisChal committed Jul 8, 2024
1 parent 8454a64 commit 5e5799f
Show file tree
Hide file tree
Showing 84 changed files with 15,594 additions and 989 deletions.
49 changes: 49 additions & 0 deletions R-proj/examples/logconcave/simple_crhmc.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
# VolEsti (volume computation and sampling library)

# Copyright (c) 2012-2020 Vissarion Fisikopoulos
# Copyright (c) 2018-2020 Apostolos Chalkis
# Copyright (c) 2020-2020 Marios Papachristou
# Copyright (c) 2022-2022 Ioannis Iakovidis

# Contributed and/or modified by Ioannis Iakovidis, as part of Google Summer of Code 2022 program.

# Licensed under GNU LGPL.3, see LICENCE file

# Example script for using the logconcave sampling methods

# Import required libraries
library(volesti)

# Sampling from uniform density example

logconcave_sample<- function(P,distribution, n_samples ,n_burns){
if (distribution == "uniform"){
f <- function(x) (0)
grad_f <- function(x) (0)
L=1
m=1
pts <- sample_points(P, n = n_samples, random_walk = list("walk" = "CRHMC", "nburns" = n_burns, "walk_length" = 1, "solver" = "implicit_midpoint"), distribution = list("density" = "logconcave", "negative_logprob" = f, "negative_logprob_gradient" = grad_f, "L_" = L, "m" = m))
return(max(psrf_univariate(pts, "interval")))
}
else if(distribution == "gaussian"){
pts <- sample_points(P, n = n_samples, random_walk = list("walk" = "CRHMC", "nburns" = n_burns, "walk_length" = 1, "solver" = "implicit_midpoint"), distribution = list("density" = "logconcave", "variance"=8))
return(max(psrf_univariate(pts, "interval")))
}
}

for (i in 1:2) {

if (i==1) {
distribution = 'gaussian'
cat("Gaussian ")
} else {
distribution = 'uniform'
cat("Uniform ")
}

P = gen_simplex(10, 'H')
psrf = logconcave_sample(P,distribution,5000,2000)
cat("psrf = ")
cat(psrf)
cat("\n")
}
98 changes: 98 additions & 0 deletions R-proj/examples/logconcave/sparse_crhmc.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# VolEsti (volume computation and sampling library)

# Copyright (c) 2012-2020 Vissarion Fisikopoulos
# Copyright (c) 2018-2020 Apostolos Chalkis
# Copyright (c) 2020-2020 Marios Papachristou
# Copyright (c) 2022-2022 Ioannis Iakovidis

# Contributed and/or modified by Ioannis Iakovidis, as part of Google Summer of Code 2022 program.

# Licensed under GNU LGPL.3, see LICENCE file

# Example script for using the logconcave sampling methods

# Import required libraries
library(ggplot2)
library(volesti)

# Sampling from logconcave density example

# Helper function
norm_vec <- function(x) sqrt(sum(x^2))

# Negative log-probability oracle
f <- function(x) (norm_vec(x)^2 + sum(x))

# Negative log-probability gradient oracle
grad_f <- function(x) (2 * x + 1)

# Interval [-1, 1]
A = matrix(c(1, -1), ncol=1, nrow=2, byrow=TRUE)
b = c(2,1)

# Create domain of truncation
P <- volesti::Hpolytope$new(A, b)

# Mode of logconcave density
x_min <- c(-0.5)

# Smoothness and strong-convexity
L <- 2
m <- 2

# Sample points
n_samples <- 80000
n_burns <- n_samples / 2
cat("---Sampling without hessian\n")
pts <- sample_points(P, n = n_samples, random_walk = list("walk" = "CRHMC", "step_size" = 0.3, "nburns" = n_burns, "walk_length" = 1, "solver" = "implicit_midpoint"), distribution = list("density" = "logconcave", "negative_logprob" = f, "negative_logprob_gradient" = grad_f, "L_" = L, "m" = m))
jpeg("histogram_without_hessian.jpg")
# Plot histogram
hist(pts, probability=TRUE, breaks = 100)

cat("Sample mean is: ")
sample_mean <- mean(pts)
cat(sample_mean)
cat("\n")
cat("Sample variance is: ")
sample_variance <- mean((pts - sample_mean)^2)
cat(sample_variance)
cat("\n")
invisible(capture.output(dev.off()))

# Negative log-probability hessian oracle
hess_f <- function(x) (2)
cat("---Sampling with hessian\n")
pts <- sample_points(P, n = n_samples, random_walk = list("walk" = "CRHMC", "step_size" = 0.3, "nburns" = n_burns, "walk_length" = 1, "solver" = "implicit_midpoint"), distribution = list("density" = "logconcave", "negative_logprob" = f, "negative_logprob_gradient" = grad_f,"negative_logprob_hessian" = hess_f, "L_" = L, "m" = m))
jpeg("histogram_with_hessian.jpg")
# Plot histogram
hist(pts, probability=TRUE, breaks = 100)

cat("Sample mean is: ")
sample_mean <- mean(pts)
cat(sample_mean)
cat("\n")
cat("Sample variance is: ")
sample_variance <- mean((pts - sample_mean)^2)
cat(sample_variance)
cat("\n")
invisible(capture.output(dev.off()))

walk="CRHMC"
library(Matrix)
bineq=matrix(c(10,10,10,10,10), nrow=5, ncol=1, byrow=TRUE)
Aineq = matrix(c(1,0,-0.25,-1,2.5,1,0.4,-1,-0.9,0.5), nrow=5, ncol=2, byrow = TRUE)
Aineq = as( Aineq, 'dgCMatrix' )
beq=matrix(,nrow=0, ncol=1, byrow=TRUE)
Aeq = matrix(, nrow=0, ncol=2, byrow = TRUE)
Aeq=as( Aeq, 'dgCMatrix' )
lb=-100000*c(1,1);
ub=100000*c(1,1);
cat("---Sampling the normal distribution in a pentagon\n")
P <- volesti::sparse_constraint_problem$new(Aineq, bineq,Aeq, beq, lb, ub)
points <- sample_points(P, n = n_samples, random_walk = list("walk" = "CRHMC", "step_size" = 0.3, "nburns" = n_burns, "walk_length" = 1, "solver" = "implicit_midpoint"), distribution = list("density" = "logconcave", "variance" = 8))
jpeg("pentagon.jpg")
plot(ggplot(data.frame( x=points[1,], y=points[2,] )) +
geom_point( aes(x=x, y=y, color=walk)) + coord_fixed(xlim = c(-15,15),
ylim = c(-15,15)) + ggtitle(sprintf("Sampling a random pentagon with walk %s", walk)))
invisible(capture.output(dev.off()))
write.table(points, file="pentagon.txt", row.names=FALSE, col.names=FALSE)
34 changes: 34 additions & 0 deletions R-proj/man/Rcpp_sparse_constraint_problem.Rd
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
\docType{class}
\name{Rcpp_sparse_constraint_problem}
\alias{Rcpp_sparse_constraint_problem-class}
\alias{[,Rcpp_sparse_constraint_problem-method}
\alias{[,Rcpp_sparse_constraint_problem,ANY,ANY,ANY-method}
\alias{$<-,Rcpp_sparse_constraint_problem-method}
\alias{$,Rcpp_sparse_constraint_problem-method}
\alias{filepaths<-,Rcpp_sparse_constraint_problem-method}
\title{
An \code{Rcpp} class to represent sparse_constraint_problems, exposed to \code{R} via modules.
}
\description{
A constraint problem is defined by a set of linear inequalities and equalities or equivalently a \eqn{d}-dimensional constraint problem is defined by a \eqn{mineq\times d} matrix Aineq and a \eqn{mineq}-dimensional vector bineq, s.t.: \eqn{Aineqx\leq bineq}, a \eqn{meq\times d} matrix Aeq and a \eqn{meq}-dimensional vector beq, s.t.: \eqn{Aeqx= beq} and two \eqn{d} vectors lb, ub such that \eqn{lb\leq x \leq ub}.}
\details{
\describe{
\item{\code{Aineq} }{\eqn{mineq\times d} sparse matrix Aineq}

\item{\code{bineq} }{\eqn{mineq}-dimensional vector bineq}

\item{\code{Aeq} }{\eqn{meq\times d} sparse matrix Aeq}

\item{\code{beq} }{\eqn{meq}-dimensional vector beq}

\item{\code{lb} }{\eqn{d}-dimensional vector bineq}

\item{\code{ub} }{\eqn{d}-dimensional vector bineq}

\item{\code{type} }{An integer that declares the representation of the polytope. For sparse_constraint_problem the default value is 5.}

\item{\code{dimension} }{The dimension of the polytope.}

}
}
\keyword{internal}
4 changes: 2 additions & 2 deletions R-proj/man/sample_points.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

26 changes: 26 additions & 0 deletions R-proj/man/sparse_constraint_problem.Rd
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
\name{sparse_constraint_problem}
\alias{sparse_constraint_problem}
\title{An \code{R} class to represent sparse constraint problems.}

\description{
A constraint problem is defined by a set of linear inequalities and equalities or equivalently a \eqn{d}-dimensional constraint problem is defined by a \eqn{mineq\times d} matrix Aineq and a \eqn{mineq}-dimensional vector bineq, s.t.: \eqn{Aineqx\leq bineq}, a \eqn{meq\times d} matrix Aeq and a \eqn{meq}-dimensional vector beq, s.t.: \eqn{Aeqx\eq beq} and two \eqn{d} vectors lb, ub such that \eqn{lb\leq x \leq ub}.
}
\section{Fields}{
\itemize{
\item{\code{Aineq} }{\eqn{mineq\times d} sparse matrix Aineq}

\item{\code{bineq} }{\eqn{mineq}-dimensional vector bineq}

\item{\code{Aeq} }{\eqn{meq\times d} sparse matrix Aeq}

\item{\code{beq} }{\eqn{meq}-dimensional vector beq}

\item{\code{lb} }{\eqn{d}-dimensional vector bineq}

\item{\code{ub} }{\eqn{d}-dimensional vector bineq}

\item{\code{type} }{An integer that declares the representation of the polytope. For sparse_constraint_problem the default value is 5.}

\item{\code{dimension} }{The dimension of the polytope.}

}}
9 changes: 7 additions & 2 deletions R-proj/src/Makevars
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,16 @@ PKG_CXXFLAGS= -Wno-deprecated-declarations -lm -ldl -Wno-ignored-attributes -DBO

CXX_STD = CXX11

PKG_LIBS=-LRproj_externals/lp_solve -llp_solve $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)
PKG_LIBS=-LRproj_externals/lp_solve -llp_solve -L../../external/PackedCSparse/qd -lqd $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

$(SHLIB): Rproj_externals/lp_solve/liblp_solve.a
$(SHLIB): Rproj_externals/lp_solve/liblp_solve.a ../../external/PackedCSparse/qd/libqd.a

Rproj_externals/lp_solve/liblp_solve.a:
@(cd Rproj_externals/lp_solve && $(MAKE) liblp_solve.a \
CC="$(CC)" CPPFLAGS="$(CPPFLAGS)" CFLAGS="$(CFLAGS)" \
CPICFLAGS="$(CPICFLAGS)" AR="$(AR)" RANLIB="$(RANLIB)")

../../external/PackedCSparse/qd/libqd.a:
@(cd ../../PackedCSparse/qd && $(MAKE) libqd.a \
CC="$(CC)" CPPFLAGS="$(CPPFLAGS)" CFLAGS="$(CFLAGS)" \
CPICFLAGS="$(CPICFLAGS)" AR="$(AR)")
9 changes: 7 additions & 2 deletions R-proj/src/Makevars.win
Original file line number Diff line number Diff line change
Expand Up @@ -2,12 +2,17 @@ PKG_CPPFLAGS=-I../../external/boost -I../../external/LPsolve_src/run_headers -I.
PKG_CXXFLAGS= -Wno-deprecated-declarations -lm -ldl -Wno-ignored-attributes -DBOOST_NO_AUTO_PTR -DDISABLE_NLP_ORACLES
CXX_STD = CXX11

PKG_LIBS=-LRproj_externals/lp_solve -llp_solve $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)
PKG_LIBS=-LRproj_externals/lp_solve -llp_solve -L../../external/PackedCSparse/qd -lqd $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

$(SHLIB): Rproj_externals/lp_solve/liblp_solve.a
$(SHLIB): Rproj_externals/lp_solve/liblp_solve.a ../../external/PackedCSparse/qd/libqd.a

Rproj_externals/lp_solve/liblp_solve.a:
@(cd Rproj_externals/lp_solve && $(MAKE) liblp_solve.a \
CC="$(CC)" CPPFLAGS="$(CPPFLAGS) -DUSRDLL -DINLINE=static" \
CFLAGS="$(CFLAGS)" CPICFLAGS="$(CPICFLAGS)" AR="$(AR)" \
RANLIB="$(RANLIB)")

../../external/PackedCSparse/qd/libqd.a:
@(cd ../../PackedCSparse/qd && $(MAKE) libqd.a \
CC="$(CC)" CPPFLAGS="$(CPPFLAGS)" CFLAGS="$(CFLAGS)" \
CPICFLAGS="$(CPICFLAGS)" AR="$(AR)")
39 changes: 38 additions & 1 deletion R-proj/src/oracle_functors_rcpp.h
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,8 @@ enum ode_solvers {
euler,
runge_kutta,
richardson,
collocation
collocation,
implicit_midpoint
};

// Holds Oracle Functor that wraps an R function via RCpp
Expand Down Expand Up @@ -91,6 +92,17 @@ struct RcppFunctor {
}
}

Point operator() (Point const& x) const {
VT y = Rcpp::as<VT>(neg_grad_f(Rcpp::wrap(x.getCoefficients())));

Point z(y);

if (negate) z = (-1.0) * z;

// Return result as Point
return z;
}

};

// Negative log-probability functor
Expand Down Expand Up @@ -118,6 +130,31 @@ struct RcppFunctor {

};

// Log-probability hessian functor
template
<
typename Point
>
struct HessianFunctor {
typedef typename Point::FT NT;
typedef typename Point::Coeff VT;

parameters<NT> params;
Rcpp::Function hessian; // Negative hessian as an Rcpp::Function

HessianFunctor(
parameters<NT> params_,
Rcpp::Function hessian_) :
params(params_),
hessian(hessian_)
{};

Point operator() (Point const& x) const {
VT y= Rcpp::as<VT>(hessian(Rcpp::wrap(x.getCoefficients())));
return Point(y);
}

};
};

#endif
Loading

0 comments on commit 5e5799f

Please sign in to comment.