Skip to content

AnOxPePred: Using deep learning for the prediction of antioxidative properties of peptides.

Notifications You must be signed in to change notification settings

TobiasHeOl/AnOxPePred

Repository files navigation

AnOxPePred: Using deep learning for the prediction of antioxidative properties of peptides.

Tobias Hegelund Olsen1, Betül Yesiltas2, Frederikke Isa Marin1, Margarita Pertseva1, Pedro J. García-Moreno2, Simon Gregersen3, Michael Toft Overgaard3, Charlotte Jacobsen2, Ole Lund2, Egon Bech Hansen2, Paolo Marcatili*1

(1) Department of Health Technology, Technical University of Denmark

(2) National Food Institute, Technical University of Denmark

(3) Department of Chemistry and Bioscience, Aalborg University

(*) Corresponding author email: [email protected]

Dietary antioxidants are an important preservative in food and have been suggested to help in disease prevention. With consumer demands for less synthetic and safer additives in food products, the food industry is searching for antioxidants that can be marketed as natural. Peptides derived from natural proteins show promise, as they are generally regarded as safe and potentially contain other beneficial bioactivities. Antioxidative peptides are usually obtained by testing various peptides derived from hydrolysis of proteins by a selection of proteases. This slow and cumbersome trial-and-error approach to identify antioxidative peptides has increased interest in developing computational approaches for prediction of antioxidant activity and thereby reduce laboratory work. A few antioxidant predictors exist, however, no tool predicting the antioxidative properties of peptides is, to the best of our knowledge, currently available as a web-server. We here present the AnOxPePred tool and web-server (http://services.bioinformatics.dtu.dk/service.php?AnOxPePred-1.0) that uses deep learning to predict the antioxidant properties of peptides. Our model was trained on a curated dataset consisting of experimentally-tested antioxidant and non-antioxidant peptides. For a variety of metrics our method displays a prediction performance better than a k-NN sequence identity-based approach. Furthermore, the developed tool will be a good benchmark for future predictors of antioxidant peptides.

About

AnOxPePred: Using deep learning for the prediction of antioxidative properties of peptides.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published