Skip to content

Ting-TT/openai

 
 

Repository files navigation

An MLHub package for OpenAI

This MLHUB package provides a command line tool based on whispher for transcribing speech from an audio file. See the MLHub Desktop Survival Guide for details.

Usage

  • To install mlhub (Ubuntu 23.10 LTS)

    pip3 install mlhub
    ml configure
  • To install and configure the package

    ml install gjwgit/openai@main
    ml configure openai
    ml readme openai
    ml commands openai
  • Command line tools

    ml supported openai --iso
    ml identify openai myspeech.wav
    ml transcribe openai myspeech.wav
    ml translate openai myspeech.wav
  • Quick test

    wget https://github.com/realpython/python-speech-recognition/raw/master/audio_files/harvard.wav
    ml transcribe openai harvard.wav

to see

The stale smell of old beer lingers. 
It takes heat to bring out the odor. 
A cold dip restores health and zest. 
A salt pickle tastes fine with ham. 
Tacos al pastor are my favorite. 
A zestful food is the hot cross bun.

Options for transcribe/translate

  • -l, --lang: Specify the language of the source audio.
    This will speed up the transcribe/translate process.
    See tokenizer.py for the list of all available languages.

  • -f, --format: Specify the output format.
    Supported formats are txt, json, srt, tsv, and vtt. Read more about formatting on MLHub Survival Guide.
    For example, -f json will format the output text to the json format.

  • -o, --output: Specify the output file name and format.
    For example, -o output.txt will save the output text as the txt format to a file named output.txt in the same directory.

Without -o, then by default, the output text will be printed in the console.

Format:
ml transcribe openai [-l LANGUAGE] [-f FORMAT] [FILENAME]
ml translate openai [-l LANGUAGE] [-o OUTPUT_FILENAME_AND_FORMAT] [FILENAME]

Examples:

ml transcribe openai -l en -f txt myspeech.wav 
ml translate openai --output jokowi.srt --lang id jokowi.wav

About

MLHub package for OpenAI

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 65.3%
  • Makefile 34.5%
  • Shell 0.2%