Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training
paper address: https://arxiv.org/pdf/2004.06002.pdf
- Linux OS
- Python 3.7 (Python 2 is not supported)
- PyTorch 1.2.0
- torchvision 0.4.0
- mmdetection tag: v1.2.0
- mmcv 0.4.3
- CUDA 10.0
- GCC(G++) 5.4.0 or higher
a. Create a conda virtual environment and activate it (Optional but recommended).
conda create --name dynamic python=3.7
conda activate dynamic
b. Install pytorch and torchvision.
pip is recommended,
pip install torch==1.2.0 torchvision==0.4.0
c. Install mmdet (other dependencies wil be installed automatically).
pip install cython
pip install easydict
pip install -r requirements.txt
pip install -v -e .
d. Prepare dataset and checkpoint file.
Download coco dataset and checkpoint file
Fold structure should be as follows:
DynamicRCNN-mmdet
├── data
│ ├── coco
│ │ ├── annotations
│ │ ├── train2017
│ │ ├── val2017
│ │ ├── test2017
├── backbone
│ ├── resnet50-19c8e357.pth
- Synchronize on multi-gpus
bash scripts/train.sh
bash scripts/test.sh