forked from ziglang/zig
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
compiler: rework comptime pointer representation and access
We've got a big one here! This commit reworks how we represent pointers in the InternPool, and rewrites the logic for loading and storing from them at comptime. Firstly, the pointer representation. Previously, pointers were represented in a highly structured manner: pointers to fields, array elements, etc, were explicitly represented. This works well for simple cases, but is quite difficult to handle in the cases of unusual reinterpretations, pointer casts, offsets, etc. Therefore, pointers are now represented in a more "flat" manner. For types without well-defined layouts -- such as comptime-only types, automatic-layout aggregates, and so on -- we still use this "hierarchical" structure. However, for types with well-defined layouts, we use a byte offset associated with the pointer. This allows the comptime pointer access logic to deal with reinterpreted pointers far more gracefully, because the "base address" of a pointer -- for instance a `field` -- is a single value which pointer accesses cannot exceed since the parent has undefined layout. This strategy is also more useful to most backends -- see the updated logic in `codegen.zig` and `codegen/llvm.zig`. For backends which do prefer a chain of field and elements accesses for lowering pointer values, such as SPIR-V, there is a helpful function in `Value` which creates a strategy to derive a pointer value using ideally only field and element accesses. This is actually more correct than the previous logic, since it correctly handles pointer casts which, after the dust has settled, end up referring exactly to an aggregate field or array element. In terms of the pointer access code, it has been rewritten from the ground up. The old logic had become rather a mess of special cases being added whenever bugs were hit, and was still riddled with bugs. The new logic was written to handle the "difficult" cases correctly, the most notable of which is restructuring of a comptime-only array (for instance, converting a `[3][2]comptime_int` to a `[2][3]comptime_int`. Currently, the logic for loading and storing work somewhat differently, but a future change will likely improve the loading logic to bring it more in line with the store strategy. As far as I can tell, the rewrite has fixed all bugs exposed by ziglang#19414. As a part of this, the comptime bitcast logic has also been rewritten. Previously, bitcasts simply worked by serializing the entire value into an in-memory buffer, then deserializing it. This strategy has two key weaknesses: pointers, and undefined values. Representations of these values at comptime cannot be easily serialized/deserialized whilst preserving data, which means many bitcasts would become runtime-known if pointers were involved, or would turn `undefined` values into `0xAA`. The new logic works by "flattening" the datastructure to be cast into a sequence of bit-packed atomic values, and then "unflattening" it; using serialization when necessary, but with special handling for `undefined` values and for pointers which align in virtual memory. The resulting code is definitely slower -- more on this later -- but it is correct. The pointer access and bitcast logic required some helper functions and types which are not generally useful elsewhere, so I opted to split them into separate files `Sema/comptime_ptr_access.zig` and `Sema/bitcast.zig`, with simple re-exports in `Sema.zig` for their small public APIs. Whilst working on this branch, I caught various unrelated bugs with transitive Sema errors, and with the handling of `undefined` values. These bugs have been fixed, and corresponding behavior test added. In terms of performance, I do anticipate that this commit will regress performance somewhat, because the new pointer access and bitcast logic is necessarily more complex. I have not yet taken performance measurements, but will do shortly, and post the results in this PR. If the performance regression is severe, I will do work to to optimize the new logic before merge. Resolves: ziglang#19452 Resolves: ziglang#19460
- Loading branch information
Showing
14 changed files
with
143 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
//! The full test name would be: | ||
//! struct field type resolution marks transitive error from bad usingnamespace in @typeInfo call from non-initial field type | ||
//! | ||
//! This test is rather esoteric. It's ensuring that errors triggered by `@typeInfo` analyzing | ||
//! a bad `usingnamespace` correctly trigger transitive errors when analyzed by struct field type | ||
//! resolution, meaning we don't incorrectly analyze code past the uses of `S`. | ||
|
||
const S = struct { | ||
ok: u32, | ||
bad: @typeInfo(T), | ||
}; | ||
|
||
const T = struct { | ||
pub usingnamespace @compileError("usingnamespace analyzed"); | ||
}; | ||
|
||
comptime { | ||
const a: S = .{ .ok = 123, .bad = undefined }; | ||
_ = a; | ||
@compileError("should not be reached"); | ||
} | ||
|
||
comptime { | ||
const b: S = .{ .ok = 123, .bad = undefined }; | ||
_ = b; | ||
@compileError("should not be reached"); | ||
} | ||
|
||
// error | ||
// | ||
// :14:24: error: usingnamespace analyzed |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
export fn entry1() void { | ||
const S = extern struct { x: u32 }; | ||
_ = *align(1:2:8) S; | ||
} | ||
|
||
export fn entry2() void { | ||
const S = struct { x: u32 }; | ||
_ = *align(1:2:@sizeOf(S) * 2) S; | ||
} | ||
|
||
export fn entry3() void { | ||
const E = enum { implicit, backing, type }; | ||
_ = *align(1:2:8) E; | ||
} | ||
|
||
// error | ||
// | ||
// :3:23: error: bit-pointer cannot refer to value of type 'tmp.entry1.S' | ||
// :3:23: note: only packed structs layout are allowed in packed types | ||
// :8:36: error: bit-pointer cannot refer to value of type 'tmp.entry2.S' | ||
// :8:36: note: only packed structs layout are allowed in packed types | ||
// :13:23: error: bit-pointer cannot refer to value of type 'tmp.entry3.E' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
export fn entry1() void { | ||
const x: i32 = undefined; | ||
const y: u32 = @bitCast(x); | ||
@compileLog(y); | ||
} | ||
|
||
export fn entry2() void { | ||
const x: packed struct { x: u16, y: u16 } = .{ .x = 123, .y = undefined }; | ||
const y: u32 = @bitCast(x); | ||
@compileLog(y); | ||
} | ||
|
||
// error | ||
// | ||
// :4:5: error: found compile log statement | ||
// :10:5: note: also here | ||
// | ||
// Compile Log Output: | ||
// @as(u32, undefined) | ||
// @as(u32, undefined) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
26 changes: 26 additions & 0 deletions
26
compile_errors/overflow_arithmetic_on_vector_with_undefined_elems.zig
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
comptime { | ||
const a: @Vector(3, u8) = .{ 1, 200, undefined }; | ||
@compileLog(@addWithOverflow(a, a)); | ||
} | ||
|
||
comptime { | ||
const a: @Vector(3, u8) = .{ 1, 2, undefined }; | ||
const b: @Vector(3, u8) = .{ 0, 3, 10 }; | ||
@compileLog(@subWithOverflow(a, b)); | ||
} | ||
|
||
comptime { | ||
const a: @Vector(3, u8) = .{ 1, 200, undefined }; | ||
@compileLog(@mulWithOverflow(a, a)); | ||
} | ||
|
||
// error | ||
// | ||
// :3:5: error: found compile log statement | ||
// :9:5: note: also here | ||
// :14:5: note: also here | ||
// | ||
// Compile Log Output: | ||
// @as(struct{@Vector(3, u8), @Vector(3, u1)}, .{ .{ 2, 144, undefined }, .{ 0, 1, undefined } }) | ||
// @as(struct{@Vector(3, u8), @Vector(3, u1)}, .{ .{ 1, 255, undefined }, .{ 0, 1, undefined } }) | ||
// @as(struct{@Vector(3, u8), @Vector(3, u1)}, .{ .{ 1, 64, undefined }, .{ 0, 1, undefined } }) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
export fn entry1() void { | ||
const x: u32 = 123; | ||
const ptr: [*]const u32 = @ptrCast(&x); | ||
_ = ptr - 1; | ||
} | ||
|
||
export fn entry2() void { | ||
const S = extern struct { x: u32, y: u32 }; | ||
const y: u32 = 123; | ||
const parent_ptr: *const S = @fieldParentPtr("y", &y); | ||
_ = parent_ptr; | ||
} | ||
|
||
// error | ||
// | ||
// :4:13: error: pointer computation here causes undefined behavior | ||
// :4:13: note: resulting pointer exceeds bounds of containing value which may trigger overflow | ||
// :10:55: error: pointer computation here causes undefined behavior | ||
// :10:55: note: resulting pointer exceeds bounds of containing value which may trigger overflow |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters