Skip to content

Commit

Permalink
Correct assert_frame_equal doc string (pandas-dev#22552)
Browse files Browse the repository at this point in the history
  • Loading branch information
pablojim authored and victor committed Sep 30, 2018
1 parent 2b58382 commit c16d601
Showing 1 changed file with 44 additions and 8 deletions.
52 changes: 44 additions & 8 deletions pandas/util/testing.py
Original file line number Diff line number Diff line change
Expand Up @@ -1306,33 +1306,40 @@ def assert_frame_equal(left, right, check_dtype=True,
check_categorical=True,
check_like=False,
obj='DataFrame'):
"""Check that left and right DataFrame are equal.
"""
Check that left and right DataFrame are equal.
This function is intended to compare two DataFrames and output any
differences. Is is mostly intended for use in unit tests.
Additional parameters allow varying the strictness of the
equality checks performed.
Parameters
----------
left : DataFrame
First DataFrame to compare.
right : DataFrame
Second DataFrame to compare.
check_dtype : bool, default True
Whether to check the DataFrame dtype is identical.
check_index_type : bool / string {'equiv'}, default False
check_index_type : {'equiv'} or bool, default 'equiv'
Whether to check the Index class, dtype and inferred_type
are identical.
check_column_type : bool / string {'equiv'}, default False
check_column_type : {'equiv'} or bool, default 'equiv'
Whether to check the columns class, dtype and inferred_type
are identical.
check_frame_type : bool, default False
check_frame_type : bool, default True
Whether to check the DataFrame class is identical.
check_less_precise : bool or int, default False
Specify comparison precision. Only used when check_exact is False.
5 digits (False) or 3 digits (True) after decimal points are compared.
If int, then specify the digits to compare
If int, then specify the digits to compare.
check_names : bool, default True
Whether to check that the `names` attribute for both the `index`
and `column` attributes of the DataFrame is identical, i.e.
* left.index.names == right.index.names
* left.columns.names == right.columns.names
by_blocks : bool, default False
Specify how to compare internal data. If False, compare by columns.
If True, compare by blocks.
Expand All @@ -1345,10 +1352,39 @@ def assert_frame_equal(left, right, check_dtype=True,
check_like : bool, default False
If True, ignore the order of index & columns.
Note: index labels must match their respective rows
(same as in columns) - same labels must be with the same data
(same as in columns) - same labels must be with the same data.
obj : str, default 'DataFrame'
Specify object name being compared, internally used to show appropriate
assertion message
assertion message.
See Also
--------
assert_series_equal : Equivalent method for asserting Series equality.
DataFrame.equals : Check DataFrame equality.
Examples
--------
This example shows comparing two DataFrames that are equal
but with columns of differing dtypes.
>>> from pandas.util.testing import assert_frame_equal
>>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]})
>>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]})
df1 equals itself.
>>> assert_frame_equal(df1, df1)
df1 differs from df2 as column 'b' is of a different type.
>>> assert_frame_equal(df1, df2)
Traceback (most recent call last):
AssertionError: Attributes are different
Attribute "dtype" are different
[left]: int64
[right]: float64
Ignore differing dtypes in columns with check_dtype.
>>> assert_frame_equal(df1, df2, check_dtype=False)
"""

# instance validation
Expand Down

0 comments on commit c16d601

Please sign in to comment.