Skip to content

Implementation of Attention-based Fusion for Multi-source Human Image Generation, S. Lathuilière, E. Sangineto, A. Siarohin, N. Sebe, WACV 2020

Notifications You must be signed in to change notification settings

Stephlat/Multi-source-Human-Image-Generation

Repository files navigation

Multi-source Human Image Generation

Implementation of Attention-based Fusion for Multi-source Human Image Generation, S. Lathuilière, E. Sangineto, A. Siarohin, N. Sebe, WACV 2020

Requirments

The code requires the same libraries as in Deformable GAN

Training

First, you need to download the datasets. To do so, follow the instructions of the Deformable GAN repo.

Then you need to create the training and test tuples:

nbinput=12 && python create_tuples_dataset.py --nb_inputs nbinput

Note that, with this command we generate tuples as if we were considering 12 input images. In this step, we recommend to keep nbinput=12 for the market dataset (and 6 for fashion), since, in the training step, only the first images of the 12-tuples will be considered if you specify fewer inputs. If you change this parameter, you will need to modify the annotation file name in cmd.py accordingly.

Then you can train your model with the following command:

nbinput=3 && CUDA_VISIBLE_DEVICES=1 python train.py --output_dir output/model_$nbinput --checkpoints_dir output/model_$nbinput --warp_skip mask --dataset market --nb_inputs $nbinput --l1_penalty_weight 0.001 --nn_loss_area_size 3 --batch_size 4 --content_loss_layer block1_conv2 --number_of_epochs 12 --dmax 6 --kernel_size_last=1 --fusion_type att_dec_rec --return_att 1 --gan_penalty_weight 0.1

The details of all the options are provided in the file cmd.py

Test

Simply run the following command with the correct path to the generator:

nbinput=3 && CUDA_VISIBLE_DEVICES=1 python test.py --warp_skip mask --dataset market --nb_inputs $nbinput --dmax 6 --kernel_size_last=1 --fusion_type att_dec_rec --return_att 1 -generator_checkpoint path/to/generator/checkpoint

For help

This repo is based on the Deformable GAN repo. You may find some help in this repo. If you don't, you can contact me on my telecom-paris.fr address (check my website).

About

Implementation of Attention-based Fusion for Multi-source Human Image Generation, S. Lathuilière, E. Sangineto, A. Siarohin, N. Sebe, WACV 2020

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages