Skip to content
This repository has been archived by the owner on Jul 2, 2019. It is now read-only.

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
dlindenbaum authored Dec 27, 2017
1 parent 7641718 commit 03919c1
Showing 1 changed file with 4 additions and 99 deletions.
103 changes: 4 additions & 99 deletions content/download_instructions/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,108 +14,13 @@ For additonal information about the datasets visit the [SpaceNet Challenge Websi
## Dependencies
The [AWS Command Line Interface (CLI)](https://aws.amazon.com/cli/) must be installed with an active AWS account. Configure the AWS CLI using 'aws configure'

## [The SpaceNet Roads Dataset](https://spacenetchallenge.github.io/datasets/spacenetRoads_summary.html)
Visit the [SpaceNet Roads Dataset website](https://spacenetchallenge.github.io/datasets/spacenetRoads_summary.html) for additional information about the dataset including instructions on how to access and download the data.

## SpaceNet Simple Storage Service (S3) Directory Structure (AOI 1)
```
s3://spacenet-dataset/
-- AOI_1_Rio
|-- processedData
| -- processedBuildingLabels.tar.gz # Compressed 3band and 8band 200m x 200m tiles with associated building foot print labels # This dataset is the Training Dataset for the first Top Coder Competition
`-- srcData
|-- rasterData
| |-- 3-Band.tar.gz # 3band (RGB) Raster Mosaic for Rio De Jenairo area (2784 sq KM) collected by WorldView-2
| -- 8-Band.tar.gz # 8band Raster Mosaic for Rio De Jenairo area (2784 sq KM) collected by WorldView-2
-- vectorData
|-- Rio_BuildingLabels.tar.gz # Source Dataset that contains Building the building foot prints traced from the Mosaic
|-- Rio_HGIS_Metro.gdb.tar.gz # Source Point of Interest Dataset in GeoDatabase Format. Best if Used with ESRI
-- Rio_HGIS_Metro_extract.tar # Source Point of Interest Dataset in GeoJSON with associated .jpg. Easy to Use without ESRI toolset
-- AOI_1_Rio
|-- processedData
| -- processedBuildingLabels.tar.gz # Compressed 3band and 8band 200m x 200m tiles with associated building foot print labels # This dataset is the Training Dataset for the first Top Coder Competition
`-- srcData
|-- rasterData
| |-- 3-Band.tar.gz # 3band (RGB) Raster Mosaic for Rio De Jenairo area (2784 sq KM) collected by WorldView-2
| -- 8-Band.tar.gz # 8band Raster Mosaic for Rio De Jenairo area (2784 sq KM) collected by WorldView-2
-- vectorData
|-- Rio_BuildingLabels.tar.gz # Source Dataset that contains Building the building foot prints traced from the Mosaic
|-- Rio_HGIS_Metro.gdb.tar.gz # Source Point of Interest Dataset in GeoDatabase Format. Best if Used with ESRI
-- Rio_HGIS_Metro_extract.tar # Source Point of Interest Dataset in GeoJSON with associated .jpg. Easy to Use without ESRI toolset
-- AOI_1_Rio
|-- processedData
| -- processedBuildingLabels.tar.gz # Compressed 3band and 8band 200m x 200m tiles with associated building foot print labels # This dataset is the Training Dataset for the first Top Coder Competition
`-- srcData
|-- rasterData
| |-- 3-Band.tar.gz # 3band (RGB) Raster Mosaic for Rio De Jenairo area (2784 sq KM) collected by WorldView-2
| -- 8-Band.tar.gz # 8band Raster Mosaic for Rio De Jenairo area (2784 sq KM) collected by WorldView-2
-- vectorData
|-- Rio_BuildingLabels.tar.gz # Source Dataset that contains Building the building foot prints traced from the Mosaic
|-- Rio_HGIS_Metro.gdb.tar.gz # Source Point of Interest Dataset in GeoDatabase Format. Best if Used with ESRI
-- Rio_HGIS_Metro_extract.tar # Source Point of Interest Dataset in GeoJSON with associated .jpg. Easy to Use without ESRI toolset
```

## SpaceNet Simple Storage Service (S3) Directory Structure (AOI 2-5)
```
├── AOI_[Num]_[City]_Train
│ ├── geojson
│ │ └── buildings # Contains GeoJson labels of buildings for each tile
│ ├── MUL # Contains Tiles of 8-Band Multi-Spectral raster data from WorldView-3
│ ├── MUL-PanSharpen # Contains Tiles of 8-Band Multi-Spectral raster data pansharpened to 0.3m
│ ├── PAN # Contains Tiles of Panchromatic raster data from Worldview-3
│ ├── RGB-PanSharpen # Contains Tiles of RGB raster data from Worldview-3
│ └── summaryData # Contains CSV with pixel based labels for each building in the Tile Set.
```
## [The SpaceNet Catalog](https://spacenetchallenge.github.io/datasets/datasetHomePage.html)
Visit the [SpaceNet Data Corpus website](https://spacenetchallenge.github.io/datasets/spacenetRoads_summary.html) for additional information about all SpaceNet datasets including instructions on how to access and download the data.

## Download instructions

### AOI 1 - Rio de Janeiro
To download processed 200mx200m tiles of AOI 1 (3.4 GB) with associated building footprints do the following:
```
aws s3api get-object --bucket spacenet-dataset --key AOI_1_Rio/processedData/processedBuildingLabels.tar.gz --request-payer requester processedBuildingLabels.tar.gz
```
To download the Source Imagery Mosaic (3-band = 2.3 GB and 8-band = 6.5 GB):
```
aws s3api get-object --bucket spacenet-dataset --key AOI_1_Rio/srcData/rasterData/3-Band.tar.gz --request-payer requester 3-Band.tar.gz
aws s3api get-object --bucket spacenet-dataset --key AOI_1_Rio/srcData/rasterData/8-Band.tar.gz --request-payer requester 8-Band.tar.gz
```
To download the Source Vector Data (0.18 GB):
```
aws s3api get-object --bucket spacenet-dataset --key AOI_1_Rio/srcData/vectorData/Rio_BuildingLabels.tar.gz --request-payer requester Rio_BuildingLabels.tar.gz
```

### AOI 2 - Vegas
To download processed 200mx200m tiles of AOI 2 (23 GB) with associated building footprints do the following:
```
aws s3api get-object --bucket spacenet-dataset --key AOI_2_Vegas/AOI_2_Vegas_Train.tar.gz --request-payer requester AOI_2_Vegas_Train.tar.gz
```

### AOI 3 - Paris
To download processed 200mx200m tiles of AOI 3 (5 GB) with associated building footprints do the following:
```
## Warning this file is 5 GB
aws s3api get-object --bucket spacenet-dataset --key AOI_3_Paris/AOI_3_Paris_Train.tar.gz --request-payer requester AOI_3_Paris_Train.tar.gz
```

### AOI 4 - Shanghai
To download processed 200mx200m tiles of AOI 4 (23 GB) with associated building footprints do the following:
```
aws s3api get-object --bucket spacenet-dataset --key AOI_4_Shanghai/AOI_4_Shanghai_Train.tar.gz --request-payer requester AOI_4_Shanghai_Train.tar.gz
```

### AOI 5 - Khartoum
To download processed 200mx200m tiles of AOI 5 (4 GB) with associated building footprints do the following:
```
aws s3api get-object --bucket spacenet-dataset --key AOI_5_Khartoum/AOI_5_Khartoum_Train.tar.gz --request-payer requester AOI_5_Khartoum_Train.tar.gz
```

### Point of Interest Dataset in ESRI GeoDatabase Form (31 GB)
```
aws s3api get-object --bucket spacenet-dataset --key AOI_1_Rio/srcData/vectorData/Rio_HGIS_Metro.gdb.tar.gz --request-payer requester Rio_HGIS_Metro.gdb.tar.gz
```

### Point of Interest Dataset Extracted into GeoJSONs with associated .jpg (29 GB)
```
aws s3api get-object --bucket spacenet-dataset --key AOI_1_Rio/srcData/vectorData/Rio_HGIS_Metro_extract.tar --request-payer requester Rio_HGIS_Metro_extract.tar
```



0 comments on commit 03919c1

Please sign in to comment.