Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement evaluate #95

Merged
merged 6 commits into from
Feb 1, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions include/sparseir/basis.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -96,8 +96,6 @@ class FiniteTempBasis : public AbstractBasis<S> {
}

auto uk = u_.polyvec[0].knots;
std::cout << "uk.size(): " << uk.size() << std::endl;
std::cout << "uk: \n" << uk << std::endl;
/*
Port the following Julia code to C++:
# The polynomials are scaled to the new variables by transforming
Expand Down Expand Up @@ -219,7 +217,6 @@ class FiniteTempBasis : public AbstractBasis<S> {
const Eigen::VectorXd default_tau_sampling_points() const override {
int sz = this->sve_result->s.size();
auto x = default_sampling_points(this->sve_result->u, sz);
std::cout << "x=" << x << std::endl;
return (this->beta / 2.0) * (x.array() + 1.0);
}

Expand Down
202 changes: 170 additions & 32 deletions include/sparseir/sampling.hpp
Original file line number Diff line number Diff line change
@@ -1,22 +1,186 @@
#pragma once

#include <Eigen/Dense>
#include <unsupported/Eigen/CXX11/Tensor>

#include <Eigen/SVD>
#include <memory>
#include <stdexcept>
#include <vector>
#include <functional>

namespace sparseir {

template <int N>
Eigen::array<int, N> getperm(int src, int dst) {
Eigen::array<int, N> perm;
if (src == dst) {
for (int i = 0; i < N; ++i) {
perm[i] = i;
}
return perm;
}

int pos = 0;
for (int i = 0; i < N; ++i) {
if (i == dst) {
perm[i] = src;
} else {
// src の位置をスキップ
if (pos == src)
++pos;
perm[i] = pos;
++pos;
}
}
return perm;
}

// movedim: テンソル arr の次元 src を次元 dst に移動する(他の次元の順序はそのまま)
template<typename T, int N>
Eigen::Tensor<T, N> movedim(const Eigen::Tensor<T, N>& arr, int src, int dst) {
if (src == dst) {
return arr;
}
auto perm = getperm<N>(src, dst);
return arr.shuffle(perm);
}

/*
A possible C++11/Eigen port of the Julia code that applies a matrix operation
along a chosen dimension of an N-dimensional array.

- matop_along_dim(buffer, mat, arr, dim, op) moves the requested dimension
to the first or last as needed, then calls matop.
- matop(buffer, mat, arr, op, dim) reshapes the tensor into a 2D view and
calls the operation function.

For simplicity, we assume:
1) T is either float/double or a complex type.
2) mat is an Eigen::MatrixXd (real) or possibly Eigen::MatrixXcd if needed.
3) The user-provided op has the signature:
void op(Eigen::Ref<Eigen::MatrixX<T>> out,
const Eigen::Ref<const Eigen::MatrixXd>& mat,
const Eigen::Ref<const Eigen::MatrixX<T>>& in);
…or a variant suitable to your problem.
*/

template <typename T, int N>
Eigen::Tensor<T, N>& matop(
Eigen::Tensor<T, N>& buffer,
const Eigen::MatrixXd& mat,
const Eigen::Tensor<T, N>& arr,
const std::function<void(
Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>& outMap,
const Eigen::MatrixXd& mat,
const Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>& inMap
)>& op,
int dim)
{
if (dim != 0 && dim != N - 1) {
throw std::domain_error("Dimension must be 0 or N-1 for matop.");
}
if (dim == 0) {
Eigen::Index rowDim = arr.dimension(0);
Eigen::Index colDim = arr.size() / rowDim;

using MatrixType = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>;

Eigen::Map<const MatrixType> inMap(arr.data(), rowDim, colDim);
Eigen::Map<MatrixType> outMap(buffer.data(), mat.rows(), colDim);

outMap = mat * inMap;
for (int i = 0; i < outMap.size(); ++i) {
buffer.data()[i] = outMap.data()[i];
}
} else {
Eigen::Index rowDim = arr.size() / arr.dimension(N - 1);
Eigen::Index colDim = arr.dimension(N - 1);
using MatrixType = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>;

Eigen::Map<const MatrixType> inMap(arr.data(), rowDim, colDim);
Eigen::Map<MatrixType> outMap(buffer.data(), rowDim, mat.rows());

outMap = inMap * mat.transpose();

for (int i = 0; i < outMap.size(); ++i) {
buffer.data()[i] = outMap.data()[i];
}
}
return buffer;
}

template <typename T, int N>
Eigen::Tensor<T, N>& matop_along_dim(
Eigen::Tensor<T, N>& buffer,
const Eigen::MatrixXd& mat,
const Eigen::Tensor<T, N>& arr,
int dim,
const std::function<void(
Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>& out,
const Eigen::MatrixXd& mat,
const Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>& in
)>& op)
{
if (dim < 0 || dim >= N) {
throw std::domain_error("Dimension must be in [0, N).");
}

if (dim == 0) {
return matop<T, N>(buffer, mat, arr, op, 0);
} else if (dim != N - 1) {
auto perm = getperm<N>(dim, 0);
Eigen::Tensor<T, N> arr_perm = arr.shuffle(perm).eval();
Eigen::Tensor<T, N> buffer_perm = buffer.shuffle(perm).eval();

matop<T, N>(buffer_perm, mat, arr_perm, op, 0);

auto inv_perm = getperm<N>(0, dim);
buffer = buffer_perm.shuffle(inv_perm).eval();
} else {
return matop<T, N>(buffer, mat, arr, op, N - 1);
}

return buffer;
}

template <typename S>
class AbstractSampling {
public:
virtual ~AbstractSampling() = default;

// Evaluate the basis coefficients at sampling points
virtual Eigen::VectorXd evaluate(
const Eigen::VectorXd& al,
const Eigen::VectorXd* points = nullptr) const = 0;
template<typename T, int N>
Eigen::Tensor<T, N> evaluate(const Eigen::Tensor<T, N>& al, int dim = 1) const {
if (dim < 0 || dim >= N) {
throw std::runtime_error(
"evaluate: dimension must be in [0..N). Got dim=" + std::to_string(dim));
}

if (get_matrix().cols() != al.dimension(dim)) {
throw std::runtime_error(
"Mismatch: matrix.cols()=" + std::to_string(get_matrix().cols())
+ ", but al.dimension(" + std::to_string(dim) + ")="
+ std::to_string(al.dimension(dim)));
}

Eigen::Tensor<T, N> buffer(al.dimensions());

std::function<void(
Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>&,
const Eigen::MatrixXd&,
const Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>&
)> op = [](
Eigen::Map<Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>& out,
const Eigen::MatrixXd& mat,
const Eigen::Map<const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>>& in
) {
out.noalias() = mat * in;
};

matop_along_dim<T, N>(buffer, get_matrix(), al, dim, op);
return buffer;
}

// Fit values at sampling points to basis coefficients
virtual Eigen::VectorXd fit(
Expand All @@ -25,6 +189,7 @@ class AbstractSampling {

// Get the sampling points
virtual const Eigen::VectorXd& sampling_points() const = 0;
virtual Eigen::MatrixXd get_matrix() const = 0;
};
// Helper function declarations
// Forward declarations
Expand All @@ -40,7 +205,6 @@ inline Eigen::MatrixXd eval_matrix(const TauSampling<S>* tau_sampling,

// Evaluate basis functions at sampling points
auto u_eval = basis->u(x);
std::cout << "u_eval = " << u_eval << std::endl;
// Transpose and scale by singular values
matrix = u_eval.transpose();

Expand All @@ -63,7 +227,6 @@ class TauSampling : public AbstractSampling<S> {

// Initialize evaluation matrix with correct dimensions
matrix_ = eval_matrix(this, basis_, sampling_points_);
std::cout << "matrix_ = " << matrix_ << std::endl;
// Check matrix dimensions
if (matrix_.rows() != sampling_points_.size() ||
matrix_.cols() != basis_->size()) {
Expand All @@ -84,27 +247,9 @@ class TauSampling : public AbstractSampling<S> {
}
}

Eigen::VectorXd evaluate(
const Eigen::VectorXd& al,
const Eigen::VectorXd* points = nullptr) const override {
if (points) {
auto eval_mat = eval_matrix(this, basis_, *points);
if (eval_mat.cols() != al.size()) {
throw std::runtime_error(
"Input vector size mismatch: got " +
std::to_string(al.size()) +
", expected " + std::to_string(eval_mat.cols()));
}
return eval_mat * al;
}

if (matrix_.cols() != al.size()) {
throw std::runtime_error(
"Input vector size mismatch: got " +
std::to_string(al.size()) +
", expected " + std::to_string(matrix_.cols()));
}
return matrix_ * al;
Eigen::MatrixXd get_matrix() const override {
return matrix_;
}

Eigen::VectorXd fit(
Expand All @@ -118,13 +263,6 @@ class TauSampling : public AbstractSampling<S> {
);
return local_svd.solve(ax);
}

if (ax.size() != matrix_.rows()) {
throw std::runtime_error(
"Input vector size mismatch: got " +
std::to_string(ax.size()) +
", expected " + std::to_string(matrix_.rows()));
}
return matrix_svd_.solve(ax);
}

Expand Down
1 change: 0 additions & 1 deletion include/sparseir/sve.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,6 @@ class SVEResult {
inline std::tuple<double, std::string, std::string>
choose_accuracy(double epsilon, const std::string &Twork)
{
std::cout << "Twork: " << Twork << std::endl;
if (Twork != "Float64" && Twork != "Float64x2") {
throw std::invalid_argument("Twork must be either 'Float64' or 'Float64x2'");
}
Expand Down
35 changes: 0 additions & 35 deletions include/sparseir/utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -43,39 +43,4 @@ bool issorted(const Eigen::MatrixBase<Derived>& vec) {
return true;
}

template <int N>
Eigen::array<int, N> getperm(int src, int dst) {
Eigen::array<int, N> perm;
if (src == dst) {
for (int i = 0; i < N; ++i) {
perm[i] = i;
}
return perm;
}

int pos = 0;
for (int i = 0; i < N; ++i) {
if (i == dst) {
perm[i] = src;
} else {
// src の位置をスキップ
if (pos == src)
++pos;
perm[i] = pos;
++pos;
}
}
return perm;
}

// movedim: テンソル arr の次元 src を次元 dst に移動する(他の次元の順序はそのまま)
template<typename T, int N>
Eigen::Tensor<T, N> movedim(const Eigen::Tensor<T, N>& arr, int src, int dst) {
if (src == dst) {
return arr;
}
auto perm = getperm<N>(src, dst);
return arr.shuffle(perm);
}

}
Loading