Skip to content

Sonkyunghwan/QTRAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning

There will be additional updates later

Predator-prey

Training

$algorithm = vdn, qmix, pqmix5(=QTRAN-alt in the paper), pqmix7(=QTRAN in the paper)

(i) 2 Predator & 1 Prey (5X5 Map) with P=0.5

python main.py --scenario endless3 --n_predator 2 --n_prey1 0 --n_prey2 1 --n_prey 1 --map_size 5 --agent pos_cac_fo --training_step 3000000 --testing_step 10000 --max_step 100 --b_size 600000 --df 0.99 --eval_step 100 --algorithm $algorithm --lr 0.0005 --seed 0 --penalty 5 --comment 215

(ii) 4 Predator & 2 Prey (7X7 Map) with P=0.5

python main.py --scenario endless3 --n_predator 4 --n_prey1 0 --n_prey2 2 --n_prey 2 --map_size 7 --agent pos_cac_fo --training_step 6000000 --testing_step 10000 --max_step 100 --b_size 1000000 --df 0.99 --eval_step 100 --algorithm $algorithm --lr 0.0005 --seed 0 --penalty 5 --comment 427 &

Others

Training

$algorithm = vdn, qmix, pqmix5(=QTRAN-alt in the paper), pqmix7(=QTRAN in the paper)

python main.py --agent pos_cac_fo --training_step 10000 --b_size 10000 --m_size 32 --seed 0 --algorithm $algorithm --penalty 0

In make_env.py

(i) Matrix game

from envs.environment import MultiAgentSimpleEnv2 as MAS

(i) Gaussian Squeeze

from envs.environment import MultiAgentSimpleEnv4 as MAS

About

There will be updates later

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published