forked from premAI-io/prem-services
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add: dalle-mini files for inference server
- Loading branch information
1 parent
95b9f1f
commit 8bba72f
Showing
6 changed files
with
240 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
import logging | ||
|
||
import uvicorn | ||
from dotenv import load_dotenv | ||
from fastapi import FastAPI | ||
from fastapi.middleware.cors import CORSMiddleware | ||
from models import DalleBasedModel | ||
from routes import router as api_router | ||
|
||
load_dotenv() | ||
|
||
logging.basicConfig( | ||
format="%(asctime)s %(levelname)-8s %(message)s", | ||
level=logging.INFO, | ||
datefmt="%Y-%m-%d %H:%M:%S", | ||
) | ||
|
||
|
||
def create_start_app_handler(app: FastAPI): | ||
def start_app() -> None: | ||
DalleBasedModel.get_model() | ||
|
||
return start_app | ||
|
||
|
||
def get_application() -> FastAPI: | ||
application = FastAPI(title="prem-chat", debug=True, version="0.0.1") | ||
application.include_router(api_router, prefix="/v1") | ||
application.add_event_handler("startup", create_start_app_handler(application)) | ||
application.add_middleware( | ||
CORSMiddleware, | ||
allow_origins=["*"], | ||
allow_credentials=True, | ||
allow_methods=["*"], | ||
allow_headers=["*"], | ||
) | ||
return application | ||
|
||
|
||
app = get_application() | ||
|
||
|
||
if __name__ == "__main__": | ||
uvicorn.run("main:app", host="0.0.0.0", port=8000) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
import base64 | ||
import io | ||
import os | ||
import random | ||
from functools import partial | ||
|
||
import jax | ||
import jax.numpy as jnp | ||
import numpy as np | ||
from dalle_mini import DalleBart, DalleBartProcessor | ||
from flax.jax_utils import replicate | ||
from flax.training.common_utils import shard_prng_key | ||
from PIL import Image | ||
from vqgan_jax.modeling_flax_vqgan import VQModel | ||
|
||
|
||
class DalleBasedModel(object): | ||
model = None | ||
model_params = None | ||
decoder = None | ||
decoder_params = None | ||
processor = None | ||
|
||
generate_fn = None | ||
decode_fn = None | ||
|
||
rand_key = None | ||
|
||
@classmethod | ||
def generate( | ||
cls, | ||
prompt: str, | ||
n: int, | ||
size: str, | ||
response_format: str, | ||
negative_prompt: str = None, | ||
top_k: float = None, | ||
top_p: float = None, | ||
temperature: float = None, | ||
cond_scale: float = 5.0, | ||
): | ||
seed = random.randint(0, 2**32 - 1) | ||
cls.rand_key = jax.random.PRNGKey(seed) | ||
tokenized_prompts = cls.processor([prompt]) | ||
tokenized_prompt = replicate(tokenized_prompts) | ||
|
||
data = [] | ||
for _ in range(n): | ||
# get a new key | ||
key, subkey = jax.random.split(cls.rand_key) | ||
# generate images | ||
encoded_images = cls.generate_fn( | ||
tokenized_prompt, | ||
shard_prng_key(subkey), | ||
cls.model_params, | ||
top_k, | ||
top_p, | ||
temperature, | ||
cond_scale, | ||
) | ||
# remove BOS | ||
encoded_images = encoded_images.sequences[..., 1:] | ||
# decode images | ||
decoded_images = cls.decode_fn(encoded_images, cls.decoder_params) | ||
decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3)) | ||
# no loop over decoded_images since inference on single prompt -> single image | ||
img = Image.fromarray(np.asarray(decoded_images[0] * 255, dtype=np.uint8)) | ||
buffered = io.BytesIO() | ||
img.save(buffered, format="PNG") | ||
data.append( | ||
{response_format: base64.b64encode(buffered.getvalue()).decode("utf-8")} | ||
) | ||
|
||
return data | ||
|
||
@classmethod | ||
def get_model(cls): | ||
jax.local_device_count() | ||
|
||
@partial(jax.pmap, axis_name="batch", static_broadcasted_argnums=(3, 4, 5, 6)) | ||
def p_generate( | ||
tokenized_prompt, key, params, top_k, top_p, temperature, condition_scale | ||
): | ||
return cls.model.generate( | ||
**tokenized_prompt, | ||
prng_key=key, | ||
params=params, | ||
top_k=top_k, | ||
top_p=top_p, | ||
temperature=temperature, | ||
condition_scale=condition_scale, | ||
) | ||
|
||
@partial(jax.pmap, axis_name="batch") | ||
def p_decode(indices, params): | ||
return cls.decoder.decode_code(indices, params=params) | ||
|
||
cls.generate_fn = p_generate | ||
cls.decode_fn = p_decode | ||
|
||
if cls.model is None: | ||
cls.model, params = DalleBart.from_pretrained( | ||
os.getenv("DALLE_MODEL_ID", "dalle-mini/dalle-mini"), | ||
revision=None, | ||
dtype=jnp.float16, | ||
_do_init=False, | ||
) | ||
cls.decoder, vqgan_params = VQModel.from_pretrained( | ||
os.getenv("VQGAN_MODEL_ID", "dalle-mini/vqgan_imagenet_f16_16384"), | ||
revision=os.getenv( | ||
"VQGAN_REVISION_ID", "e93a26e7707683d349bf5d5c41c5b0ef69b677a9" | ||
), | ||
_do_init=False, | ||
) | ||
cls.processor = DalleBartProcessor.from_pretrained( | ||
os.getenv("DALLE_MODEL_ID", "dalle-mini/dalle-mini"), revision=None | ||
) | ||
|
||
cls.model_params = replicate(params) | ||
cls.decoder_params = replicate(vqgan_params) | ||
|
||
return cls.model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
from datetime import datetime as dt | ||
from typing import List, Union | ||
|
||
from fastapi import APIRouter | ||
from models import DalleBasedModel as model | ||
from pydantic import BaseModel | ||
|
||
|
||
class ImageGenerationInput(BaseModel): | ||
prompt: str | ||
n: int = 1 | ||
size: str = "" | ||
cond_scale: float = 5.0 | ||
temperature: float = None | ||
top_p: float = None | ||
top_k: float = None | ||
response_format: str = "b64_json" | ||
user: str = "" | ||
|
||
|
||
class ImageObjectUrl(BaseModel): | ||
url: str | ||
|
||
|
||
class ImageObjectBase64(BaseModel): | ||
b64_json: str | ||
|
||
|
||
class ImageGenerationResponse(BaseModel): | ||
created: int = int(dt.now().timestamp()) | ||
data: Union[List[ImageObjectUrl], List[ImageObjectBase64]] | ||
|
||
|
||
class HealthResponse(BaseModel): | ||
status: bool | ||
|
||
|
||
router = APIRouter() | ||
|
||
|
||
@router.get("/", response_model=HealthResponse) | ||
async def health(): | ||
return HealthResponse(status=True) | ||
|
||
|
||
@router.post("/images/generations") | ||
async def images_generations(body: ImageGenerationInput): | ||
images = model.generate( | ||
prompt=body.prompt, | ||
n=body.n, | ||
size=body.size, | ||
temperature=body.temperature, | ||
top_p=body.top_p, | ||
top_k=body.top_k, | ||
cond_scale=body.cond_scale, | ||
response_format=body.response_format, | ||
) | ||
return ImageGenerationResponse(created=int(dt.now().timestamp()), data=images) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
from fastapi.testclient import TestClient | ||
from main import get_application | ||
|
||
|
||
def test_generate_image() -> None: | ||
app = get_application() | ||
with TestClient(app) as client: | ||
response = client.post( | ||
"/v1/images/generations", | ||
json={ | ||
"prompt": "Hello World", | ||
"n": 1, | ||
}, | ||
) | ||
assert response.status_code == 200 | ||
print(response.json()) |