A set of classes for managing tiles of geospatial vector data
Install via pip:
pip install vectortile
Source:
$ git clone https://github.com/SkyTruth/vectortile.git
$ cd vectortile
$ pip install -r requirements.txt
$ nosetests
$ python setup.py install
TypedMatrix is a binary coded format optimized for delivering large amounts of tabular data from a web server to a javascript client without the need for parsing in javascript on the client side.
The vectortile.TypedMatrix module provides functions to read and write typed-matrix formatted strings.
A TypedMatrix is a packed 2 dimensional array of typed values suitable for typecasting to a set of javascript arrays. Currently two fundamental data types are supported:
- Int32
- Float32
Special handling is provided for converting datetime values to Float32. The format includes a header containing a json object, which can contain arbitrary content. The header must contain at least:
- length: indicated the number of rows in the data section
- cols: an array of column definitions. The length of this array indicates the number of columns in each row
For example, a TypedMatrix with 2 rows and 3 columns:
{
'length': 2,
'cols': [
{
'type': 'Float32',
'name': 'float'
},
{
'type': 'Int32',
'name': 'int'
},
{
'type': 'Float32',
'name': 'timestamp'
}
]
}
>>> from vectortile import TypedMatrix
>>> from datetime import datetime
>>> from pprint import pprint
# Create two rows of 3 columns each: int, float and datetime
>>> data = [{'int':1, 'float':1.0, 'timestamp': datetime(2014,1,1)}]
>>> data.append ({'int':2, 'float':2.0, 'timestamp':datetime(2014,1,2)})
>>> t_str = TypedMatrix.pack(data)
# Typedmatrix is now coded as a binary string, packed row-wise
>>> t_str
'tmtx\x01\x00\x00\x00r\x89\x00\x00\x00{"length": 2, "cols": [{"type": "Float32", "name": "float"}, {"type": "Int32", "name": "int"}, {"type": "Float32", "name": "timestamp"}]}\x00\x00\x80?\x01\x00\x00\x00\x8d\xa5\xa1S\x00\x00\x00@\x02\x00\x00\x00 \xa8\xa1S'
>>> header, data = TypedMatrix.unpack(t_str)
>>> pprint(header)
{
'cols': [
{
'name': 'float',
'type': 'Float32'
},
{
'name': 'int',
'type': 'Int32'
},
{
'name': 'timestamp',
'type': 'Float32'
}
],
'length': 2
}
>>> pprint(data)
[
{
'float': 1.0,
'int': 1,
'timestamp': 1388534431744.0
},
{
'float': 2.0,
'int': 2,
'timestamp': 1388620808192.0
}
]
# Pack data column-wise
>>> TypedMatrix.pack(data,orientation='columnwise')
'tmtx\x01\x00\x00\x00c\x89\x00\x00\x00{"length": 2, "cols": [{"type": "Float32", "name": "float"}, {"type": "Int32", "name": "int"}, {"type": "Float32", "name": "timestamp"}]}\x00\x00\x80?\x00\x00\x00@\x01\x00\x00\x00\x02\x00\x00\x00\x8d\xa5\xa1S \xa8\xa1S'
>>> header, data = TypedMatrix.unpack(t_str)
>>> pprint(header)
{
'cols': [
{
'name': 'float',
'type': 'Float32'
},
{
'name': 'int',
'type': 'Int32'
},
{
'name': 'timestamp',
'type': 'Float32'
}
],
'length': 2
}
>>> pprint(data)
[
{
'float': 1.0,
'int': 1,
'timestamp': 1388534431744.0
},
{
'float': 2.0,
'int': 2,
'timestamp': 1388620808192.0
}
]