forked from jplag/JPlag
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
56 additions
and
0 deletions.
There are no files selected for viewing
56 changes: 56 additions & 0 deletions
56
jplag/src/test/java/de/jplag/clustering/ClusteringResultTest.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
package de.jplag.clustering; | ||
|
||
import static org.junit.Assert.assertEquals; | ||
|
||
import java.util.List; | ||
|
||
import org.apache.commons.math3.linear.Array2DRowRealMatrix; | ||
import org.apache.commons.math3.linear.RealMatrix; | ||
import org.junit.Test; | ||
|
||
public class ClusteringResultTest { | ||
|
||
@Test | ||
public void perfectClustering() { | ||
RealMatrix similarity = new Array2DRowRealMatrix(4, 4); | ||
|
||
// These are similar | ||
setEntries(similarity, 0, 1, 1f); | ||
setEntries(similarity, 2, 3, 1f); | ||
|
||
// Others are dissimilar | ||
|
||
ClusteringResult<Integer> result = ClusteringResult.fromIntegerCollections(List.of(List.of(0, 1), List.of(2, 3)), similarity); | ||
|
||
// The maximum of the metric is 1 - 1/k for k clusters | ||
assertEquals(0.5, result.getCommunityStrength(), 0.00001); | ||
} | ||
|
||
@Test | ||
public void uniformClustering() { | ||
RealMatrix similarity = new Array2DRowRealMatrix(4, 4); | ||
|
||
// We'd obtain such weights by pre-selecting the clusters, | ||
// then randomly picking two clusters and adding weight between random of each | ||
// cluster | ||
|
||
// These are similar | ||
setEntries(similarity, 0, 1, 0.1f); | ||
setEntries(similarity, 2, 3, 0.1f); | ||
|
||
// Others are dissimilar | ||
setEntries(similarity, 0, 2, 0.05f); | ||
setEntries(similarity, 0, 3, 0.05f); | ||
setEntries(similarity, 1, 2, 0.05f); | ||
setEntries(similarity, 1, 3, 0.05f); | ||
|
||
ClusteringResult<Integer> result = ClusteringResult.fromIntegerCollections(List.of(List.of(0, 1), List.of(2, 3)), similarity); | ||
|
||
assertEquals(0.0, result.getCommunityStrength(), 0.00001); | ||
} | ||
|
||
private static void setEntries(RealMatrix matrix, int i, int j, double value) { | ||
matrix.setEntry(i, j, value); | ||
matrix.setEntry(j, i, value); | ||
} | ||
} |