forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【Hackathon 5th No.33】为 Paddle 新增 atleast_1d / atleast_2d / atleast_3d…
… API -part (PaddlePaddle#58323) * [Init] add atleast api * [Add] add atleast test * [Fix] import atleast * [Change] test_atleast.py to test_atleast_nd.py and add bool data type test * [Update] update dtype supports and unittest * [Fix] dtype error unittest * [Change] static test with test_with_pir_api * [Add] atleast_Nd as tensor method
Showing
4 changed files
with
648 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,458 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
|
||
import numpy as np | ||
import parameterized as param | ||
|
||
import paddle | ||
from paddle.base import core | ||
from paddle.pir_utils import test_with_pir_api | ||
|
||
RTOL = 1e-5 | ||
ATOL = 1e-8 | ||
|
||
PLACES = [paddle.CPUPlace()] + ( | ||
[paddle.CUDAPlace(0)] if core.is_compiled_with_cuda() else [] | ||
) | ||
|
||
|
||
def func_ref(func, *inputs): | ||
"""ref func, just for convenience""" | ||
return func(*inputs) | ||
|
||
|
||
test_list = [ | ||
(paddle.atleast_1d, np.atleast_1d), | ||
(paddle.atleast_2d, np.atleast_2d), | ||
(paddle.atleast_3d, np.atleast_3d), | ||
] | ||
|
||
|
||
def generate_data(ndim, count=1, max_size=4, mix=False, dtype='int32'): | ||
"""generate test data | ||
Args: | ||
ndim(int): dim of inputs | ||
count(int): input count for each dim | ||
max_size(int): max size for each dim | ||
mix(bool): mix data types or not, like a data list [123, np.array(123), paddle.to_tensor(123), ...] | ||
dtype(str): dtype | ||
Returns: | ||
a list of data like: | ||
[[data, dtype, shape, name], [data, dtype, shape, name] ... ] | ||
""" | ||
|
||
rtn = [] | ||
for d in range(ndim): | ||
data = [ | ||
np.random.randint( | ||
0, | ||
255, | ||
size=[np.random.randint(1, max_size) for _ in range(d)], | ||
dtype=dtype, | ||
) | ||
for _ in range(count) | ||
] | ||
|
||
if mix: | ||
|
||
def _mix_data(data, idx): | ||
if idx % 3 == 0: | ||
return data.tolist() | ||
elif idx % 3 == 1: | ||
return data | ||
elif idx % 3 == 2: | ||
return paddle.to_tensor(data) | ||
|
||
# mix normal/numpy/tensor | ||
rtn.append( | ||
list( | ||
zip( | ||
*[ | ||
[ | ||
_mix_data(_data, idx), | ||
str(_data.dtype), | ||
_data.shape, | ||
'{}d_{}_{}'.format(d, idx, 'mix'), | ||
] | ||
for idx, _data in enumerate(data) | ||
] | ||
) | ||
) | ||
) | ||
|
||
else: | ||
# normal | ||
rtn.append( | ||
list( | ||
zip( | ||
*[ | ||
[ | ||
_data.tolist(), | ||
str(_data.dtype), | ||
_data.shape, | ||
'{}d_{}_{}'.format(d, idx, 'normal'), | ||
] | ||
for idx, _data in enumerate(data) | ||
] | ||
) | ||
) | ||
) | ||
# numpy | ||
rtn.append( | ||
list( | ||
zip( | ||
*[ | ||
[ | ||
_data, | ||
str(_data.dtype), | ||
_data.shape, | ||
'{}d_{}_{}'.format(d, idx, 'numpy'), | ||
] | ||
for idx, _data in enumerate(data) | ||
] | ||
) | ||
) | ||
) | ||
# tensor | ||
rtn.append( | ||
list( | ||
zip( | ||
*[ | ||
[ | ||
paddle.to_tensor(_data), | ||
str(_data.dtype), | ||
_data.shape, | ||
'{}d_{}_{}'.format(d, idx, 'tensor'), | ||
] | ||
for idx, _data in enumerate(data) | ||
] | ||
) | ||
) | ||
) | ||
return rtn | ||
|
||
|
||
class BaseTest(unittest.TestCase): | ||
"""Test in each `PLACES`, each `test_list`, and in `static/dygraph`""" | ||
|
||
@test_with_pir_api | ||
def _test_static_api( | ||
self, | ||
inputs: list, | ||
dtypes: list, | ||
shapes: list, | ||
names: list, | ||
): | ||
"""Test `static`, convert `Tensor` to `numpy array` before feed into graph""" | ||
for place in PLACES: | ||
paddle.enable_static() | ||
for func, func_type in test_list: | ||
with paddle.static.program_guard(paddle.static.Program()): | ||
x = [] | ||
feed = {} | ||
for i in range(len(inputs)): | ||
input = inputs[i] | ||
shape = shapes[i] | ||
dtype = dtypes[i] | ||
name = names[i] | ||
x.append(paddle.static.data(name, shape, dtype)) | ||
# the data feeded should NOT be a Tensor | ||
feed[name] = ( | ||
input.numpy() | ||
if isinstance(input, paddle.Tensor) | ||
else input | ||
) | ||
|
||
out = func(*x) | ||
exe = paddle.static.Executor(place) | ||
res = exe.run(feed=feed, fetch_list=[out]) | ||
|
||
# unwrap inputs when lenght 1 | ||
if len(inputs) == 1: | ||
res = res[0] | ||
|
||
out_ref = func_ref( | ||
func_type, | ||
*[ | ||
input.numpy() | ||
if isinstance(input, paddle.Tensor) | ||
else input | ||
for input in inputs | ||
] | ||
) | ||
|
||
for n, p in zip(out_ref, res): | ||
np.testing.assert_allclose(n, p, rtol=RTOL, atol=ATOL) | ||
|
||
def _test_dygraph_api( | ||
self, | ||
inputs: list, | ||
dtypes: list, | ||
shapes: list, | ||
names: list, | ||
): | ||
"""Test `dygraph`, and check grads""" | ||
for place in PLACES: | ||
paddle.disable_static(place) | ||
for func, func_type in test_list: | ||
out = func(*inputs) | ||
out_ref = func_ref( | ||
func_type, | ||
*[ | ||
input.numpy() | ||
if isinstance(input, paddle.Tensor) | ||
else input | ||
for input in inputs | ||
] | ||
) | ||
|
||
for n, p in zip(out_ref, out): | ||
np.testing.assert_allclose( | ||
n, p.numpy(), rtol=RTOL, atol=ATOL | ||
) | ||
|
||
# check grads | ||
if len(inputs) == 1: | ||
out = [out] | ||
|
||
for y in out: | ||
y.stop_gradient = False | ||
z = y * 123 | ||
grads = paddle.grad(z, y) | ||
self.assertTrue(len(grads), 1) | ||
self.assertEqual(grads[0].dtype, y.dtype) | ||
self.assertEqual(grads[0].shape, y.shape) | ||
|
||
|
||
@param.parameterized_class( | ||
('inputs', 'dtypes', 'shapes', 'names'), | ||
(generate_data(5, count=1, max_size=4, dtype='int32')), | ||
) | ||
class TestAtleastDim(BaseTest): | ||
"""test dim from 0 to 5""" | ||
|
||
def test_all(self): | ||
self._test_dygraph_api( | ||
self.inputs, self.dtypes, self.shapes, self.names | ||
) | ||
self._test_static_api(self.inputs, self.dtypes, self.shapes, self.names) | ||
|
||
|
||
@param.parameterized_class( | ||
('inputs', 'dtypes', 'shapes', 'names'), | ||
(generate_data(5, count=3, max_size=4, dtype='int32')), | ||
) | ||
class TestAtleastDimMoreInputs(BaseTest): | ||
"""test inputs of 3 tensors""" | ||
|
||
def test_all(self): | ||
self._test_dygraph_api( | ||
self.inputs, self.dtypes, self.shapes, self.names | ||
) | ||
self._test_static_api(self.inputs, self.dtypes, self.shapes, self.names) | ||
|
||
|
||
@param.parameterized_class( | ||
('inputs', 'dtypes', 'shapes', 'names'), | ||
(generate_data(5, count=5, max_size=4, mix=True, dtype='int32')), | ||
) | ||
class TestAtleastMixData(BaseTest): | ||
"""test mix number/numpy/tensor""" | ||
|
||
def test_all(self): | ||
self._test_dygraph_api( | ||
self.inputs, self.dtypes, self.shapes, self.names | ||
) | ||
self._test_static_api(self.inputs, self.dtypes, self.shapes, self.names) | ||
|
||
|
||
@param.parameterized_class( | ||
('inputs', 'dtypes', 'shapes', 'names'), | ||
( | ||
( | ||
( | ||
123, | ||
np.array([123], dtype='int32'), | ||
paddle.to_tensor([[123]], dtype='int32'), | ||
[[[123]]], | ||
np.array([[[[123]]]], dtype='int32'), | ||
paddle.to_tensor([[[[[123]]]]], dtype='int32'), | ||
), | ||
('int32', 'int32', 'int32', 'int32', 'int32', 'int32'), | ||
((), (1,), (1, 1), (1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1, 1)), | ||
( | ||
'0_mixdim', | ||
'1_mixdim', | ||
'2_mixdim', | ||
'3_mixdim', | ||
'4_mixdim', | ||
'5_mixdim', | ||
), | ||
), | ||
), | ||
) | ||
class TestAtleastMixDim(BaseTest): | ||
"""test mix dim""" | ||
|
||
def test_all(self): | ||
self._test_dygraph_api( | ||
self.inputs, self.dtypes, self.shapes, self.names | ||
) | ||
self._test_static_api(self.inputs, self.dtypes, self.shapes, self.names) | ||
|
||
|
||
@param.parameterized_class( | ||
('inputs', 'dtypes', 'shapes', 'names'), | ||
( | ||
( | ||
( | ||
paddle.to_tensor(True, dtype='bool'), | ||
paddle.to_tensor(0.1, dtype='float16'), | ||
paddle.to_tensor(0.1, dtype='float32'), | ||
paddle.to_tensor(0.1, dtype='float64'), | ||
paddle.to_tensor(1, dtype='int8'), | ||
paddle.to_tensor(1, dtype='int16'), | ||
paddle.to_tensor(1, dtype='int32'), | ||
paddle.to_tensor(1, dtype='int64'), | ||
paddle.to_tensor(1, dtype='uint8'), | ||
paddle.to_tensor(1 + 1j, dtype='complex64'), | ||
paddle.to_tensor(1 + 1j, dtype='complex128'), | ||
paddle.to_tensor(0.1, dtype='bfloat16'), | ||
), | ||
( | ||
'bool', | ||
'float16', | ||
'float32', | ||
'float64', | ||
'int8', | ||
'int16', | ||
'int32', | ||
'int64', | ||
'uint8', | ||
'complex64', | ||
'complex128', | ||
'bfloat16', | ||
), | ||
( | ||
(), | ||
(), | ||
(), | ||
(), | ||
(), | ||
(), | ||
(), | ||
(), | ||
(), | ||
(), | ||
(), | ||
(), | ||
), | ||
( | ||
'0_mixdtype', | ||
'1_mixdtype', | ||
'2_mixdtype', | ||
'3_mixdtype', | ||
'4_mixdtype', | ||
'5_mixdtype', | ||
'6_mixdtype', | ||
'7_mixdtype', | ||
'8_mixdtype', | ||
'9_mixdtype', | ||
'10_mixdtype', | ||
'11_mixdtype', | ||
), | ||
), | ||
), | ||
) | ||
class TestAtleastMixDtypes(BaseTest): | ||
"""test mix dtypes""" | ||
|
||
def test_all(self): | ||
self._test_dygraph_api( | ||
self.inputs, self.dtypes, self.shapes, self.names | ||
) | ||
self._test_static_api(self.inputs, self.dtypes, self.shapes, self.names) | ||
|
||
|
||
@param.parameterized_class( | ||
('inputs', 'dtypes', 'shapes', 'names'), | ||
( | ||
(((123, [123]),), ('int32',), ((),), ('0_combine',)), | ||
( | ||
((np.array([123], dtype='int32'), [[123]]),), | ||
('int32',), | ||
((),), | ||
('1_combine',), | ||
), | ||
( | ||
( | ||
( | ||
np.array([[123]], dtype='int32'), | ||
paddle.to_tensor([[[123]]], dtype='int32'), | ||
), | ||
), | ||
('int32',), | ||
((),), | ||
('2_combine',), | ||
), | ||
), | ||
) | ||
class TestAtleastErrorCombineInputs(BaseTest): | ||
"""test combine inputs, like: `at_leastNd((x, y))`, where paddle treats like numpy""" | ||
|
||
def test_all(self): | ||
with self.assertRaises(ValueError): | ||
self._test_dygraph_api( | ||
self.inputs, self.dtypes, self.shapes, self.names | ||
) | ||
|
||
with self.assertRaises(ValueError): | ||
self._test_static_api( | ||
self.inputs, self.dtypes, self.shapes, self.names | ||
) | ||
|
||
|
||
class TestAtleastAsTensorMethod(unittest.TestCase): | ||
def test_as_tensor_method(self): | ||
input = 123 | ||
tensor = paddle.to_tensor(input) | ||
|
||
for place in PLACES: | ||
paddle.disable_static(place) | ||
|
||
out = tensor.atleast_1d() | ||
out_ref = np.atleast_1d(input) | ||
|
||
for n, p in zip(out_ref, out): | ||
np.testing.assert_allclose(n, p.numpy(), rtol=RTOL, atol=ATOL) | ||
|
||
out = tensor.atleast_2d() | ||
out_ref = np.atleast_2d(input) | ||
|
||
for n, p in zip(out_ref, out): | ||
np.testing.assert_allclose(n, p.numpy(), rtol=RTOL, atol=ATOL) | ||
|
||
out = tensor.atleast_3d() | ||
out_ref = np.atleast_3d(input) | ||
|
||
for n, p in zip(out_ref, out): | ||
np.testing.assert_allclose(n, p.numpy(), rtol=RTOL, atol=ATOL) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |