forked from NIEHS/ToxicR
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
50f567d
commit 7ba4f4e
Showing
11 changed files
with
2,351 additions
and
92 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
setGeneric("parse_prior", function(prior) standardGeneric("parse_prior")) | ||
setGeneric("create_continuous_prior", | ||
function(prior_list, model, distribution, deg = 2) { | ||
standardGeneric("create_continuous_prior") | ||
} | ||
) | ||
setGeneric("create_dichotomous_prior", function(prior, model) { | ||
standardGeneric("create_dichotomous_prior") | ||
}) | ||
|
||
setMethod("parse_prior", "list", function(prior) { | ||
# Build the distribution from the string | ||
rV <- list() | ||
rV$prior <- prior$prior | ||
|
||
temp_a <- regexpr("[[][a-zA-Z]+-*[a-zA-Z]+[]]", prior$model) | ||
start <- temp_a[1] + 1 | ||
end <- start + attr(temp_a, "match.length") - 3 | ||
if (temp_a == -1) { | ||
stop("Could not find a distribution for analysis.") | ||
} | ||
rV$distribution <- substr(prior$model, start, end) | ||
rV$model <- prior$mean | ||
BMD_Bayes_continuous_model( | ||
prior = rV$prior, | ||
model = rV$model, | ||
distribution = rV$distribution, | ||
parameters = character(), | ||
mean = rV$model | ||
) | ||
}) | ||
|
||
setMethod("create_continuous_prior", | ||
signature( | ||
prior_list = "ANY", | ||
model = "character", | ||
distribution = "character" | ||
), | ||
function(prior_list, model, distribution, deg = 2) { | ||
if (!("BMDmodelprior" %in% class(prior_list))) { | ||
stop("Prior is not of a 'BMDmodelprior' class. | ||
Define the prior with `create_prior_list()` or similar.") | ||
} | ||
|
||
p <- NA | ||
if (grepl("aerts", model)) { | ||
if (model %in% c("exp-aerts", "invexp-aerts", "hill-aerts", "lognormal-aerts")) { | ||
p <- .check_4param(prior_list, distribution) | ||
} else if (model %in% c("logistic-aerts", "probit-aerts")) { | ||
p <- .check_4param_sigmoidal(prior_list, distribution) | ||
} else if (model %in% c("gamma-aerts", "invgamma-aerts", "lomax-aerts", | ||
"invlomax-aerts", "logskew-aerts", "invlogskew-aerts")) { | ||
p <- .check_5param(prior_list, distribution) | ||
} | ||
if (model %in% c("gamma-aerts", "invgamma-aerts")) { | ||
p <- .check_5param_gamma(prior_list, distribution) | ||
} | ||
p$mean <- model | ||
} else { | ||
# handle the non-aerts | ||
if (model == "LMS") { | ||
p <- .check_4param(prior_list, distribution) | ||
p$mean <- model | ||
} else if (model == "gamma-efsa") { | ||
p <- .check_4param_gamma(prior_list, distribution) | ||
p$mean <- model | ||
} else if (model == "hill") { | ||
p <- .check_hill(prior_list, distribution) | ||
} else if (model == "FUNL") { | ||
p <- .check_FUNL(prior_list, distribution) | ||
} else if (model == "exp-5") { | ||
p <- .check_exp5(prior_list, distribution) | ||
} else if (model == "exp-3") { | ||
p <- .check_exp3(prior_list, distribution) | ||
} else if (model == "polynomial") { | ||
p <- .check_polynomial(prior_list, distribution) | ||
} else if (model == "power") { | ||
p <- .check_power(prior_list, distribution) | ||
} | ||
} | ||
|
||
ret_obj <- BMD_Bayes_continuous_model( | ||
prior = p$prior, | ||
distribution = distribution, | ||
model = p$model, | ||
parameters = p$parameters, | ||
mean = p$mean, | ||
degree = ifelse(!is.null(p$degree), p$degree, deg) | ||
) | ||
return(ret_obj) | ||
} | ||
) | ||
|
||
ma_build_priors <- function(Y = NA, model_list = NA, distribution_list = NA, ma_type = "EFSA") { | ||
if (is.na(model_list[1])) { | ||
if (ma_type == "EFSA") { | ||
model_list <- c( | ||
rep("exp-aerts", 2), rep("invexp-aerts", 2), rep("hill-aerts", 2), | ||
rep("lognormal-aerts", 2), rep("gamma-efsa", 2), rep("LMS", 2), | ||
rep("probit-aerts", 2), rep("logistic-aerts", 2) | ||
) | ||
distribution_list <- rep(c("normal", "lognormal"), 8) | ||
} | ||
else if (ma_type == "original") { | ||
model_list <- c( | ||
rep("hill", 2), rep("exp-3", 3), | ||
rep("exp-5", 3), rep("power", 2) | ||
) | ||
distribution_list <- c( | ||
"normal", "normal-ncv", | ||
rep(c("normal", "normal-ncv", "lognormal"), 2), | ||
"normal", "normal-ncv" | ||
) | ||
} | ||
else if (ma_type == "all") { | ||
model_list <- rep(.continuous_models, each = length(.continuous_distributions)) | ||
distribution_list <- rep(.continuous_distributions, length(.continuous_models)) | ||
badd_inds <- c(3, 12, 13:18) | ||
model_list <- model_list[-badd_inds] | ||
distribution_list <- distribution_list[-badd_inds] | ||
} | ||
} else { | ||
# check that the models are valid | ||
if (!all(model_list %in% .continuous_models[-(5:6)])) { | ||
stop("Please specify only the following model types: \n | ||
\"hill\",\"exp-3\",\"exp-5\",\"power\", \"exp-aerts\", \"invexp-aerts\", \"gamma-aerts\", \"invgamma-aerts\", \"hill-aerts\", | ||
\"lomax-aerts\", \"invlomax-aerts\", \"lognormal-aerts\", \"logskew-aerts\", \"invlogskew-aerts\", \"logistic-aerts\", \"probit-aerts\", \"LMS\", | ||
\"gamma-efsa\"") | ||
} | ||
# if no distributions, default to normal-ncv | ||
if (is.na(distribution_list[1])) { | ||
temp <- unique(model_list) | ||
if (length(temp) != length(model_list)) { | ||
warning("Removing duplicate models. Please specify distribution_list to avoid this behavior.") | ||
model_list <- temp | ||
} | ||
distribution_list <- rep("normal-ncv", length(temp)) | ||
} else { | ||
# check size compatibility | ||
if (length(model_list) != length(distribution_list)) { | ||
stop("Please specify a distribution for each model.") | ||
} | ||
# check distribution validity | ||
if (!all(distribution_list %in% .continuous_distributions)) { | ||
stop("Please specify only the following distribution types: \"normal\", \"normal-ncv\", \"lognormal\"") | ||
} | ||
} | ||
} | ||
|
||
if (!is.na(Y[1])) { | ||
is_neg <- .check_negative_response(Y) | ||
if (is_neg) { | ||
tmp_idx <- which(distribution_list == "lognormal") | ||
model_list <- model_list[-tmp_idx] | ||
distribution_list <- distribution_list[-tmp_idx] | ||
if (identical(tmp_idx, integer(0))) { | ||
warning("Negative response values found. All lognormal models were removed.") | ||
} | ||
} | ||
} | ||
|
||
prior_list <- list() | ||
for (ii in seq_along(model_list)) { | ||
PR <- .bayesian_prior_continuous_default(model_list[ii], distribution_list[ii], 2) | ||
|
||
if (!is.na(Y[1])) { | ||
if (distribution_list[ii] == "lognormal") { | ||
if (ncol(Y) > 1) { | ||
PR$priors[nrow(PR$priors), 2] <- log(mean(Y[, 3]) ^ 2) | ||
} else { | ||
PR$priors[nrow(PR$priors), 2] <- log(var(log(Y))) | ||
} | ||
} else { | ||
if (ncol(Y) > 1) { | ||
if (distribution_list[ii] == "normal") { | ||
PR$priors[nrow(PR$priors), 2] <- log(mean(Y[, 3]) ^ 2) | ||
} else { | ||
PR$priors[nrow(PR$priors), 2] <- log(abs(mean(Y[1,])) / mean(Y[, 3]) ^ 2) | ||
} | ||
} else { | ||
if (distribution_list[ii] == "normal") { | ||
PR$priors[nrow(PR$priors), 2] <- log(var(Y)) | ||
} else { | ||
PR$priors[nrow(PR$priors), 2] <- log(abs(mean(Y)) / var(Y)) | ||
} | ||
} | ||
} | ||
} | ||
|
||
t_prior_result <- create_continuous_prior(PR, model_list[ii], distribution_list[ii], 2) | ||
prior_list[[ii]] <- t_prior_result | ||
} | ||
|
||
return(prior_list) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# Generated by using Rcpp::compileAttributes() -> do not edit by hand | ||
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 | ||
|
||
.owenst_fn <- function(x, fx) { | ||
.Call(`_ToxicR_owenst_fn`, x, fx) | ||
} | ||
|
||
.run_single_dichotomous <- function(model, data, pr, options1, options2) { | ||
.Call(`_ToxicR_run_single_dichotomous`, model, data, pr, options1, options2) | ||
} | ||
|
||
.run_continuous_single <- function(model, Y, X, prior, options, dist_type) { | ||
.Call(`_ToxicR_run_continuous_single`, model, Y, X, prior, options, dist_type) | ||
} | ||
|
||
.run_continuous_ma_laplace <- function(model_priors, model_type, dist_type, Y, X, options) { | ||
.Call(`_ToxicR_run_continuous_ma_laplace`, model_priors, model_type, dist_type, Y, X, options) | ||
} | ||
|
||
.run_continuous_ma_mcmc <- function(model_priors, model_type, dist_type, Y, X, options) { | ||
.Call(`_ToxicR_run_continuous_ma_mcmc`, model_priors, model_type, dist_type, Y, X, options) | ||
} | ||
|
||
.run_ma_dichotomous <- function(data, priors, models, model_p, is_MCMC, options1, options2) { | ||
.Call(`_ToxicR_run_ma_dichotomous`, data, priors, models, model_p, is_MCMC, options1, options2) | ||
} | ||
|
||
.run_dichotomous_single_mcmc <- function(model, Y, D, pr, options) { | ||
.Call(`_ToxicR_run_dichotomous_single_mcmc`, model, Y, D, pr, options) | ||
} | ||
|
||
.run_continuous_single_mcmc <- function(model, Y, D, priors, options, is_logNormal, suff_stat) { | ||
.Call(`_ToxicR_run_continuous_single_mcmc`, model, Y, D, priors, options, is_logNormal, suff_stat) | ||
} | ||
|
||
.polykCPP <- function(dose, tumor, daysOnStudy) { | ||
.Call(`_ToxicR_polyk`, dose, tumor, daysOnStudy) | ||
} | ||
|
||
.setseedGSL <- function(s) { | ||
invisible(.Call(`_ToxicR_setseedGSL`, s)) | ||
} | ||
|
||
.set_threads <- function(num_threads) { | ||
invisible(.Call(`_ToxicR_set_threads`, num_threads)) | ||
} | ||
|
Oops, something went wrong.