Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update to MathOptInterface v1.0 #218

Merged
merged 5 commits into from
Mar 24, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
231 changes: 142 additions & 89 deletions src/solve/moi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,22 +4,95 @@ const MOI = MathOptInterface
struct MOIOptimizationProblem{T,F<:OptimizationFunction,uType,P} <: MOI.AbstractNLPEvaluator
f::F
u0::uType
p::P
p::P
J::Matrix{T}
H::Matrix{T}
cons_H::Vector{Matrix{T}}
end

MOI.eval_objective(moiproblem::MOIOptimizationProblem, x) = moiproblem.f(x, moiproblem.p)
function MOIOptimizationProblem(prob::OptimizationProblem)
num_cons = prob.ucons === nothing ? 0 : length(prob.ucons)
f = instantiate_function(prob.f, prob.u0, prob.f.adtype, prob.p, num_cons)
T = eltype(prob.u0)
n = length(prob.u0)
return MOIOptimizationProblem(
f,
prob.u0,
prob.p,
zeros(T, num_cons, n),
zeros(T, n, n),
Matrix{T}[zeros(T, n, n) for i in 1:num_cons],
)
end

MOI.features_available(::MOIOptimizationProblem) = [:Grad, :Hess, :Jac]

function MOI.initialize(
moiproblem::MOIOptimizationProblem,
requested_features::Vector{Symbol},
)
available_features = MOI.features_available(moiproblem)
for feat in requested_features
if !(feat in available_features)
error("Unsupported feature $feat")
# TODO: implement Jac-vec and Hess-vec products
# for solvers that need them
end
end
return
end

function MOI.eval_objective(moiproblem::MOIOptimizationProblem, x)
return moiproblem.f(x, moiproblem.p)
end

MOI.eval_constraint(moiproblem::MOIOptimizationProblem, g, x) = g .= moiproblem.f.cons(x)
function MOI.eval_constraint(moiproblem::MOIOptimizationProblem, g, x)
g .= moiproblem.f.cons(x)
return
end

MOI.eval_objective_gradient(moiproblem::MOIOptimizationProblem, G, x) = moiproblem.f.grad(G, x)
function MOI.eval_objective_gradient(moiproblem::MOIOptimizationProblem, G, x)
moiproblem.f.grad(G, x)
return
end

function MOI.eval_hessian_lagrangian(moiproblem::MOIOptimizationProblem{T}, h, x, σ, μ) where {T}
# This structure assumes the calculation of moiproblem.J is dense.
function MOI.jacobian_structure(moiproblem::MOIOptimizationProblem)
rows, cols = size(moiproblem.J)
return Tuple{Int,Int}[(i, j) for j in 1:cols for i in 1:rows]
end

function MOI.eval_constraint_jacobian(moiproblem::MOIOptimizationProblem, j, x)
if isempty(j)
return
elseif moiproblem.f.cons_j === nothing
error(
"Use OptimizationFunction to pass the derivatives or " *
"automatically generate them with one of the autodiff backends",
)
end
moiproblem.f.cons_j(moiproblem.J, x)
for i in eachindex(j)
j[i] = moiproblem.J[i]
end
return
end

# Because the Hessian is symmetrical, we choose to store the upper-triangular
# component. We also assume that it is dense.
function MOI.hessian_lagrangian_structure(moiproblem::MOIOptimizationProblem)
num_vars = length(moiproblem.u0)
return Tuple{Int,Int}[(row, col) for col in 1:num_vars for row in 1:col]
end

function MOI.eval_hessian_lagrangian(
moiproblem::MOIOptimizationProblem{T},
h,
x,
σ,
μ,
) where {T}
n = length(moiproblem.u0)
a = zeros(n, n)
moiproblem.f.hess(a, x)
if iszero(σ)
fill!(h, zero(T))
else
Expand Down Expand Up @@ -47,126 +120,99 @@ function MOI.eval_hessian_lagrangian(moiproblem::MOIOptimizationProblem{T}, h, x
return
end

function MOI.eval_constraint_jacobian(moiproblem::MOIOptimizationProblem, j, x)
isempty(j) && return
moiproblem.f.cons_j === nothing && error("Use OptimizationFunction to pass the derivatives or automatically generate them with one of the autodiff backends")
n = length(moiproblem.u0)
moiproblem.f.cons_j(moiproblem.J, x)
for i in eachindex(j)
j[i] = moiproblem.J[i]
end
end

function MOI.jacobian_structure(moiproblem::MOIOptimizationProblem)
return Tuple{Int,Int}[(con, var) for con in 1:size(moiproblem.J,1) for var in 1:size(moiproblem.J,2)]
odow marked this conversation as resolved.
Show resolved Hide resolved
end

function MOI.hessian_lagrangian_structure(moiproblem::MOIOptimizationProblem)
return Tuple{Int,Int}[(row, col) for col in 1:length(moiproblem.u0) for row in 1:col]
end

function MOI.initialize(moiproblem::MOIOptimizationProblem, requested_features::Vector{Symbol})
for feat in requested_features
if !(feat in MOI.features_available(moiproblem))
error("Unsupported feature $feat")
# TODO: implement Jac-vec and Hess-vec products
# for solvers that need them
end
end
end

MOI.features_available(moiproblem::MOIOptimizationProblem) = [:Grad, :Hess, :Jac]

function make_moi_problem(prob::OptimizationProblem)
num_cons = prob.ucons === nothing ? 0 : length(prob.ucons)
f = instantiate_function(prob.f,prob.u0,prob.f.adtype,prob.p,num_cons)
T = eltype(prob.u0)
n = length(prob.u0)
moiproblem = MOIOptimizationProblem(f,prob.u0,prob.p,zeros(T,num_cons,n),zeros(T,n,n),Matrix{T}[zeros(T,n,n) for i in 1:num_cons])
return moiproblem
end
_create_new_optimizer(opt::MOI.AbstractOptimizer) = opt
_create_new_optimizer(opt::MOI.OptimizerWithAttributes) = MOI.instantiate(opt)

function __map_optimizer_args(prob::OptimizationProblem, opt::Union{MOI.AbstractOptimizer, MOI.OptimizerWithAttributes};
function __map_optimizer_args(
prob::OptimizationProblem,
opt::Union{MOI.AbstractOptimizer, MOI.OptimizerWithAttributes};
maxiters::Union{Number, Nothing}=nothing,
maxtime::Union{Number, Nothing}=nothing,
abstol::Union{Number, Nothing}=nothing,
abstol::Union{Number, Nothing}=nothing,
reltol::Union{Number, Nothing}=nothing,
kwargs...)

mapped_args = Vector{Pair{String, Any}}[]
mapped_args = [mapped_args..., [Pair(string(j.first),j.second) for j = kwargs]...]

if isa(opt, MOI.AbstractOptimizer)
if length(mapped_args) > 0
opt = MOI.OptimizerWithAttributes(typeof(opt), mapped_args...)
else
opt = typeof(opt)
end
kwargs...,
)
optimizer = _create_new_optimizer(opt)
for (key, value) in kwargs
MOI.set(optimizer, MOI.RawOptimizerAttribute("$(key)"), value)
end

optimizer = MOI.instantiate(opt)

if !isnothing(maxtime)
MOI.set(optimizer, MOI.TimeLimitSec(), maxtime)
end

if !isnothing(reltol)
@warn "common reltol argument is currently not used by $(optimizer). Set tolerances via optimizer specific keyword aguments."
end

if !isnothing(abstol)
@warn "common abstol argument is currently not used by $(optimizer). Set tolerances via optimizer specific keyword aguments."
end

if !isnothing(maxiters)
@warn "common maxiters argument is currently not used by $(optimizer). Set number of interations via optimizer specific keyword aguments."
end

return optimizer
end

function __solve(prob::OptimizationProblem, opt::Union{MOI.AbstractOptimizer, MOI.OptimizerWithAttributes};
function __solve(
prob::OptimizationProblem,
opt::Union{MOI.AbstractOptimizer, MOI.OptimizerWithAttributes};
maxiters::Union{Number, Nothing}=nothing,
maxtime::Union{Number, Nothing}=nothing,
abstol::Union{Number, Nothing}=nothing,
abstol::Union{Number, Nothing}=nothing,
reltol::Union{Number, Nothing}=nothing,
kwargs...)

kwargs...,
)
maxiters = _check_and_convert_maxiters(maxiters)
maxtime = _check_and_convert_maxtime(maxtime)

opt_setup = __map_optimizer_args(prob, opt; abstol=abstol, reltol=reltol, maxiters=maxiters, maxtime=maxtime, kwargs...)

opt_setup = __map_optimizer_args(
prob,
opt;
abstol=abstol,
reltol=reltol,
maxiters=maxiters,
maxtime=maxtime,
kwargs...,
)
num_variables = length(prob.u0)
θ = MOI.add_variables(opt_setup, num_variables)
if prob.lb !== nothing
θ = MOI.add_variables(opt_setup, num_variables)
if prob.lb !== nothing
@assert eachindex(prob.lb) == Base.OneTo(num_variables)
for i in 1:num_variables
MOI.add_constraint(opt_setup, MOI.SingleVariable(θ[i]), MOI.GreaterThan(prob.lb[i]))
for i in 1:num_variables
if prob.lb[i] > -Inf
MOI.add_constraint(opt_setup, θ[i], MOI.GreaterThan(prob.lb[i]))
end
odow marked this conversation as resolved.
Show resolved Hide resolved
end
end
if prob.ub !== nothing
if prob.ub !== nothing
@assert eachindex(prob.ub) == Base.OneTo(num_variables)
for i in 1:num_variables
MOI.add_constraint(opt_setup, MOI.SingleVariable(θ[i]), MOI.LessThan(prob.ub[i]))
for i in 1:num_variables
if prob.ub[i] < Inf
MOI.add_constraint(opt_setup, θ[i], MOI.LessThan(prob.ub[i]))
end
end
end
@assert eachindex(prob.u0) == Base.OneTo(num_variables)
for i in 1:num_variables
MOI.set(opt_setup, MOI.VariablePrimalStart(), θ[i], prob.u0[i])
end
MOI.set(opt_setup, MOI.ObjectiveSense(), prob.sense === MaxSense ? MOI.MAX_SENSE : MOI.MIN_SENSE)
if MOI.supports(opt_setup, MOI.VariablePrimalStart(), MOI.VariableIndex)
@assert eachindex(prob.u0) == Base.OneTo(num_variables)
for i in 1:num_variables
MOI.set(opt_setup, MOI.VariablePrimalStart(), θ[i], prob.u0[i])
end
end
MOI.set(
opt_setup,
MOI.ObjectiveSense(),
prob.sense === MaxSense ? MOI.MAX_SENSE : MOI.MIN_SENSE,
)
if prob.lcons === nothing
@assert prob.ucons === nothing
con_bounds = MOI.NLPBoundsPair[]
else
@assert prob.ucons !== nothing
con_bounds = MOI.NLPBoundsPair.(prob.lcons, prob.ucons)
end
MOI.set(opt_setup, MOI.NLPBlock(), MOI.NLPBlockData(con_bounds, make_moi_problem(prob), true))

MOI.optimize!(opt_setup)

MOI.set(
opt_setup,
MOI.NLPBlock(),
MOI.NLPBlockData(con_bounds, MOIOptimizationProblem(prob), true),
)
MOI.optimize!(opt_setup)
if MOI.get(opt_setup, MOI.ResultCount()) >= 1
minimizer = MOI.get(opt_setup, MOI.VariablePrimal(), θ)
minimum = MOI.get(opt_setup, MOI.ObjectiveValue())
Expand All @@ -176,5 +222,12 @@ function __solve(prob::OptimizationProblem, opt::Union{MOI.AbstractOptimizer, MO
minimum = NaN
opt_ret= :Default
end
SciMLBase.build_solution(prob, opt, minimizer, minimum; original=opt_setup, retcode=opt_ret)
return SciMLBase.build_solution(
prob,
opt,
minimizer,
minimum;
original=opt_setup,
retcode=opt_ret,
)
end
2 changes: 1 addition & 1 deletion test/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ ForwardDiff = ">= 0.10.19"
GCMAES = ">= 0.1.25"
Ipopt = ">= 0.7.0"
IterTools = ">= 1.3.0"
MathOptInterface = ">= 0.9.22"
MathOptInterface = ">= 1"
Metaheuristics = ">=3.0.2"
ModelingToolkit = ">= 6.4.7"
MultistartOptimization = ">= 0.1.2"
Expand Down