-
-
Notifications
You must be signed in to change notification settings - Fork 42
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add advanced tutorials #213
Conversation
Codecov Report
@@ Coverage Diff @@
## master #213 +/- ##
==========================================
+ Coverage 19.86% 20.95% +1.08%
==========================================
Files 8 8
Lines 735 735
==========================================
+ Hits 146 154 +8
+ Misses 589 581 -8 see 2 files with indirect coverage changes 📣 We’re building smart automated test selection to slash your CI/CD build times. Learn more |
@ErikQQY let's rebase this! |
```@example ill_conditioned_nlprob | ||
using Symbolics | ||
du0 = copy(u0) | ||
jac_sparsity = Symbolics.jacobian_sparsity((du, u) -> brusselator_2d_loop(du, u, p), | ||
du0, u0) | ||
``` |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Isn't this unnecessary with @avik-pal 's changes?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
just pass in AutoSparseForwardDiff()
and it should do the sparsity with symbolics
Looks like |
I will look into this |
using NonlinearSolve, LinearAlgebra, SparseArrays, LinearSolve, Symbolics, IncompleteLU
const N = 32
const xyd_brusselator = range(0, stop=1, length=N)
brusselator_f(x, y) = (((x - 0.3)^2 + (y - 0.6)^2) <= 0.1^2) * 5.0
limit(a, N) = ifelse(a == N + 1, 1, ifelse(a == 0, N, a))
function brusselator_2d_loop(du, u, p)
A, B, alpha, dx = p
alpha = alpha / dx^2
@inbounds for I in CartesianIndices((N, N))
i, j = Tuple(I)
x, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]]
ip1, im1, jp1, jm1 = limit(i + 1, N), limit(i - 1, N), limit(j + 1, N),
limit(j - 1, N)
du[i, j, 1] = alpha * (u[im1, j, 1] + u[ip1, j, 1] + u[i, jp1, 1] + u[i, jm1, 1] -
4u[i, j, 1]) +
B + u[i, j, 1]^2 * u[i, j, 2] - (A + 1) * u[i, j, 1] +
brusselator_f(x, y)
du[i, j, 2] = alpha * (u[im1, j, 2] + u[ip1, j, 2] + u[i, jp1, 2] + u[i, jm1, 2] -
4u[i, j, 2]) +
A * u[i, j, 1] - u[i, j, 1]^2 * u[i, j, 2]
end
end
p = (3.4, 1.0, 10.0, step(xyd_brusselator))
function init_brusselator_2d(xyd)
N = length(xyd)
u = zeros(N, N, 2)
for I in CartesianIndices((N, N))
x = xyd[I[1]]
y = xyd[I[2]]
u[I, 1] = 22 * (y * (1 - y))^(3 / 2)
u[I, 2] = 27 * (x * (1 - x))^(3 / 2)
end
u
end
u0 = init_brusselator_2d(xyd_brusselator)
prob_brusselator_2d = NonlinearProblem(brusselator_2d_loop, u0, p)
ff = NonlinearFunction(brusselator_2d_loop)
prob_brusselator_2d_sparse = NonlinearProblem(ff, u0, p)
# Default no sparsity
@benchmark solve($prob_brusselator_2d, $NewtonRaphson())
# BenchmarkTools.Trial: 22 samples with 1 evaluation.
# Range (min … max): 217.598 ms … 293.832 ms ┊ GC (min … max): 0.00% … 6.07%
# Time (median): 227.871 ms ┊ GC (median): 0.00%
# Time (mean ± σ): 233.451 ms ± 17.872 ms ┊ GC (mean ± σ): 1.34% ± 1.85%
# █ ▃▃█ ▃
# █▁▁▁███▇▇█▇▁▇▇▁▁▇▁▁▁▁▁▇▁▁▇▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▇▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▇ ▁
# 218 ms Histogram: frequency by time 294 ms <
# Memory estimate: 32.72 MiB, allocs estimate: 5190.
# Use symbolics for sparsity
@benchmark solve($prob_brusselator_2d_sparse,
$NewtonRaphson(; autodiff=AutoSparseForwardDiff()))
# BenchmarkTools.Trial: 14 samples with 1 evaluation.
# Range (min … max): 321.055 ms … 407.954 ms ┊ GC (min … max): 0.00% … 9.52%
# Time (median): 377.523 ms ┊ GC (median): 1.97%
# Time (mean ± σ): 370.549 ms ± 28.095 ms ┊ GC (mean ± σ): 4.71% ± 4.92%
# ▁ ▁ █ ▁ ▁ ▁▁ ▁ ▁▁ ▁▁ ▁
# █▁▁▁▁▁█▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁▁▁█▁▁██▁▁█▁▁██▁▁▁▁▁▁██▁▁▁▁█ ▁
# 321 ms Histogram: frequency by time 408 ms <
# Memory estimate: 118.91 MiB, allocs estimate: 1698721.
# Internally switch to non-sparse AD for JacVec
@benchmark solve($prob_brusselator_2d_sparse,
$NewtonRaphson(; linsolve=KrylovJL_GMRES(), autodiff=AutoSparseForwardDiff()))
# BenchmarkTools.Trial: 206 samples with 1 evaluation.
# Range (min … max): 22.760 ms … 31.461 ms ┊ GC (min … max): 0.00% … 20.72%
# Time (median): 23.727 ms ┊ GC (median): 0.00%
# Time (mean ± σ): 24.290 ms ± 1.559 ms ┊ GC (mean ± σ): 2.00% ± 4.52%
# ▁ ▄█▇▂
# █▇▇▁▇▇████▇▄▆▇▄▁▄▆▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄▄▄▇███▆▁▁▁▁▁▁▁▁▁▁▁▁▄▁▁▁▄ ▆
# 22.8 ms Histogram: log(frequency) by time 30 ms <
# Memory estimate: 7.58 MiB, allocs estimate: 8952.
# Using Preconditioner requiring concrete Jacobian
function incompletelu(W, du, u, p, t, newW, Plprev, Prprev, solverdata)
if newW === nothing || newW
Pl = ilu(W, τ=50.0)
else
Pl = Plprev
end
return Pl, nothing
end
@benchmark solve($prob_brusselator_2d_sparse,
$NewtonRaphson(linsolve=KrylovJL_GMRES(), precs=incompletelu, concrete_jac=true,
autodiff=AutoSparseForwardDiff()))
# BenchmarkTools.Trial: 17 samples with 1 evaluation.
# Range (min … max): 256.001 ms … 365.592 ms ┊ GC (min … max): 0.00% … 22.01%
# Time (median): 303.444 ms ┊ GC (median): 0.00%
# Time (mean ± σ): 303.785 ms ± 38.993 ms ┊ GC (mean ± σ): 7.23% ± 8.32%
# ▁ █▁ ▁ ▁ ▁ ▁ █ ▁ ▁▁ ▁ ▁ ▁ ▁
# █▁▁██▁█▁▁█▁█▁▁▁▁▁█▁▁▁▁▁▁▁▁█▁▁█▁▁▁▁▁▁▁▁▁▁▁▁██▁▁▁▁▁▁▁█▁▁▁▁█▁█▁█ ▁
# 256 ms Histogram: frequency by time 366 ms <
# Memory estimate: 123.53 MiB, allocs estimate: 1707967. Needs #229 |
Profiling the results, it seems all the time is spent in computing the sparsity pattern in Symbolics |
Well then for now we should show how to compute the sparsity pattern ahead of time as an optimization. |
# How much time is spent in the sparsity detection?
du0 = copy(u0)
jac_sparsity = Symbolics.jacobian_sparsity((du, u) -> brusselator_2d_loop(du, u, p),
du0, u0)
ff = NonlinearFunction(brusselator_2d_loop; jac_prototype=float.(jac_sparsity))
prob_brusselator_2d_sparse = NonlinearProblem(ff, u0, p)
@benchmark solve($prob_brusselator_2d_sparse,
$NewtonRaphson(linsolve=KrylovJL_GMRES(), precs=incompletelu, concrete_jac=true,
autodiff=AutoSparseForwardDiff()))
# BenchmarkTools.Trial: 273 samples with 1 evaluation.
# Range (min … max): 16.504 ms … 33.019 ms ┊ GC (min … max): 0.00% … 46.31%
# Time (median): 17.419 ms ┊ GC (median): 0.00%
# Time (mean ± σ): 18.309 ms ± 2.084 ms ┊ GC (mean ± σ): 3.99% ± 7.24%
# ▂ █▁▃▁
# ▇██████▇▅▃▂▁▃▂▂▃▂▃▃▅▃▃▂▅▅▄▄▄▃▄▃▂▃▂▁▁▁▁▁▁▂▁▁▂▁▁▁▁▁▂▁▂▁▁▁▂▁▁▂ ▃
# 16.5 ms Histogram: frequency by time 25.8 ms <
# Memory estimate: 20.87 MiB, allocs estimate: 31283.
colorvec = ArrayInterface.matrix_colors(jac_sparsity)
ff = NonlinearFunction(brusselator_2d_loop; jac_prototype=float.(jac_sparsity), colorvec)
prob_brusselator_2d_sparse = NonlinearProblem(ff, u0, p)
@benchmark solve($prob_brusselator_2d_sparse,
$NewtonRaphson(linsolve=KrylovJL_GMRES(), precs=incompletelu, concrete_jac=true,
autodiff=AutoSparseForwardDiff()))
# BenchmarkTools.Trial: 323 samples with 1 evaluation.
# Range (min … max): 13.083 ms … 33.518 ms ┊ GC (min … max): 0.00% … 55.24%
# Time (median): 15.584 ms ┊ GC (median): 0.00%
# Time (mean ± σ): 15.488 ms ± 2.421 ms ┊ GC (mean ± σ): 4.03% ± 9.14%
# ▃▄▂ █▅█▁
# ███▇▇▄▃▃▃▇████▄▄▄▃▃▃▂▃▁▁▁▁▁▁▁▂▁▁▁▂▂▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▃▁▁▂▂▁▂ ▃
# 13.1 ms Histogram: frequency by time 27.1 ms <
# Memory estimate: 16.09 MiB, allocs estimate: 559. |
Yes so we should document that in the performance tutorial until it's better |
Signed-off-by: ErikQQY <[email protected]> Add packages in docs Signed-off-by: ErikQQY <[email protected]> Update docs/src/tutorials/advanced.md Co-authored-by: Christopher Rackauckas <[email protected]> Update docs/src/tutorials/advanced.md Co-authored-by: Christopher Rackauckas <[email protected]> Update docs/src/tutorials/advanced.md Co-authored-by: Christopher Rackauckas <[email protected]> Same environment for ill conditioned nlprob Signed-off-by: ErikQQY <[email protected]>
4ac4831
to
d1910b4
Compare
What is the correct way of adding a preconditioner for linear solvers in NonlinearSolve.jl? I wrote this tutorial based on solving large stiff ODE in diffeq docs. I think the preconditioners should be the same since we have a common LinearSolve.jl interface, but the preconditioners failed when I passed them to
solve
.MWE: