Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[WIP] feat: compatibility of NNODE with CUDA #866

Closed
wants to merge 5 commits into from

Conversation

sathvikbhagavan
Copy link
Member

Added a custom broadcast function for GPU with KA.jl. But it gives me an error while running solve.

MWE:

using Random, NeuralPDE
using OrdinaryDiffEq
using Lux, OptimizationOptimisers
using LuxCUDA, ComponentArrays, StaticArrays

rng = Random.default_rng()
Random.seed!(100)
const gpud = Lux.gpu_device()

function f(u, p, t)
    SVector{2}(p[1] * u[1] - p[2] * u[1] * u[2], -p[3] * u[2] + p[4] * u[1] * u[2])
end
p = SVector{4}(1.5, 1.0, 3.0, 1.0)
u0 = SVector{2}(1.0, 1.0)
prob_oop = ODEProblem{false}(f, u0, (0.0, 3.0), p)
func = Lux.σ
N = 12
chain = Lux.Chain(
    Lux.Dense(1, N, func), Lux.Dense(N, N, func), Lux.Dense(N, N, func),
    Lux.Dense(N, N, func), Lux.Dense(N, length(u0)))
opt = OptimizationOptimisers.Adam(0.01)
weights = [0.7, 0.2, 0.1]
points = 200
alg = NNODE(chain, opt; autodiff = false,
    strategy = NeuralPDE.WeightedIntervalTraining(weights, points), device = gpud)
sol = solve(prob_oop, alg, verbose = false, maxiters = 5000, saveat = 0.01)

gives me an error:

julia> sol = solve(prob_oop, alg, verbose = false, maxiters = 5000, saveat = 0.01)
┌ Warning: Mixed Precision Inputs received for `weight`: CuArray{Float32, 2, CUDA.DeviceMemory} and `x`: CuArray{Float64, 2, CUDA.DeviceMemory}. Promoting to Float64.
└ @ LuxLibCUDAExt ~/.julia/packages/LuxLib/Q3elb/ext/LuxLibCUDAExt/cublaslt.jl:27
ERROR: Compiling Tuple{CUDA.var"##cufunction#1171", Base.Pairs{Symbol, Union{Nothing, Bool}, Tuple{Symbol, Symbol}, @NamedTuple{always_inline::Bool, maxthreads::Nothing}}, typeof(cufunction), typeof(NeuralPDE.gpu_custom_broadcast!), Type{Tuple{KernelAbstractions.CompilerMetadata{KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicCheck, Nothing, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, KernelAbstractions.NDIteration.NDRange{1, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}}}, ODEFunction{false, SciMLBase.AutoSpecialize, typeof(f), LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED), Nothing, Nothing, Nothing, Nothing}, CuDeviceMatrix{Float64, 1}, CuDeviceMatrix{Float64, 1}, CuDeviceVector{Float64, 1}, CuDeviceVector{Float64, 1}}}}: try/catch is not supported.
Refer to the Zygote documentation for fixes.
https://fluxml.ai/Zygote.jl/latest/limitations

Stacktrace:
  [1] macro expansion
    @ ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0 [inlined]
  [2] _pullback(::Zygote.Context{false}, ::CUDA.var"##cufunction#1171", ::@Kwargs{always_inline::Bool, maxthreads::Nothing}, ::typeof(cufunction), ::typeof(NeuralPDE.gpu_custom_broadcast!), ::Type{Tuple{…}})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:87
  [3] cufunction
    @ ~/.julia/packages/CUDA/75aiI/src/compiler/execution.jl:361 [inlined]
  [4] _pullback(::Zygote.Context{false}, ::typeof(Core.kwcall), ::@NamedTuple{always_inline::Bool, maxthreads::Nothing}, ::typeof(cufunction), ::typeof(NeuralPDE.gpu_custom_broadcast!), ::Type{Tuple{…}})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
  [5] #_#4
    @ ~/.julia/packages/CUDA/75aiI/src/compiler/execution.jl:112 [inlined]
  [6] _pullback(::Zygote.Context{…}, ::CUDA.CUDAKernels.var"##_#4", ::Int64, ::Int64, ::KernelAbstractions.Kernel{…}, ::ODEFunction{…}, ::CuArray{…}, ::CuArray{…}, ::CuArray{…}, ::CuArray{…})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
  [7] _apply
    @ ./boot.jl:838 [inlined]
  [8] adjoint
    @ ~/.julia/packages/Zygote/nsBv0/src/lib/lib.jl:203 [inlined]
  [9] _pullback
    @ ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:67 [inlined]
 [10] Kernel
    @ ~/.julia/packages/CUDA/75aiI/src/CUDAKernels.jl:89 [inlined]
 [11] _pullback(::Zygote.Context{…}, ::typeof(Core.kwcall), ::@NamedTuple{}, ::KernelAbstractions.Kernel{…}, ::ODEFunction{…}, ::CuArray{…}, ::CuArray{…}, ::CuArray{…}, ::CuArray{…})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
 [12] rhs
    @ ~/NeuralPDE.jl/src/ode_solve.jl:236 [inlined]
 [13] _pullback(::Zygote.Context{…}, ::typeof(NeuralPDE.rhs), ::LuxCUDADevice{…}, ::ODEFunction{…}, ::CuArray{…}, ::CuArray{…}, ::CuArray{…})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
 [14] inner_loss
    @ ~/NeuralPDE.jl/src/ode_solve.jl:225 [inlined]
 [15] _pullback(::Zygote.Context{…}, ::typeof(NeuralPDE.inner_loss), ::NeuralPDE.ODEPhi{…}, ::ODEFunction{…}, ::Bool, ::Vector{…}, ::ComponentVector{…}, ::SVector{…}, ::Bool)
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
 [16] loss
    @ ~/NeuralPDE.jl/src/ode_solve.jl:315 [inlined]
 [17] _pullback(::Zygote.Context{…}, ::NeuralPDE.var"#loss#200"{}, ::ComponentVector{…}, ::NeuralPDE.ODEPhi{…})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
 [18] total_loss
    @ ~/NeuralPDE.jl/src/ode_solve.jl:425 [inlined]
 [19] _pullback(::Zygote.Context{…}, ::NeuralPDE.var"#total_loss#213"{}, ::ComponentVector{…}, ::SciMLBase.NullParameters)
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
 [20] _apply
    @ ./boot.jl:838 [inlined]
 [21] adjoint
    @ ~/.julia/packages/Zygote/nsBv0/src/lib/lib.jl:203 [inlined]
 [22] _pullback
    @ ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:67 [inlined]
 [23] OptimizationFunction
    @ ~/.julia/packages/SciMLBase/sakPO/src/scimlfunctions.jl:3762 [inlined]
 [24] _pullback(::Zygote.Context{…}, ::OptimizationFunction{…}, ::ComponentVector{…}, ::SciMLBase.NullParameters)
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
 [25] _apply(::Function, ::Vararg{Any})
    @ Core ./boot.jl:838
 [26] adjoint
    @ ~/.julia/packages/Zygote/nsBv0/src/lib/lib.jl:203 [inlined]
 [27] _pullback
    @ ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:67 [inlined]
 [28] #37
    @ ~/.julia/packages/OptimizationBase/32Mb0/ext/OptimizationZygoteExt.jl:90 [inlined]
 [29] _pullback(ctx::Zygote.Context{false}, f::OptimizationZygoteExt.var"#37#55"{OptimizationFunction{}, OptimizationBase.ReInitCache{}}, args::ComponentVector{Float32, CuArray{…}, Tuple{…}})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
 [30] _apply(::Function, ::Vararg{Any})
    @ Core ./boot.jl:838
 [31] adjoint
    @ ~/.julia/packages/Zygote/nsBv0/src/lib/lib.jl:203 [inlined]
 [32] _pullback
    @ ~/.julia/packages/ZygoteRules/M4xmc/src/adjoint.jl:67 [inlined]
 [33] #39
    @ ~/.julia/packages/OptimizationBase/32Mb0/ext/OptimizationZygoteExt.jl:93 [inlined]
 [34] _pullback(ctx::Zygote.Context{false}, f::OptimizationZygoteExt.var"#39#57"{Tuple{}, OptimizationZygoteExt.var"#37#55"{}}, args::ComponentVector{Float32, CuArray{…}, Tuple{…}})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface2.jl:0
 [35] pullback(f::Function, cx::Zygote.Context{false}, args::ComponentVector{Float32, CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{Axis{…}}})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface.jl:90
 [36] pullback
    @ ~/.julia/packages/Zygote/nsBv0/src/compiler/interface.jl:88 [inlined]
 [37] gradient(f::Function, args::ComponentVector{Float32, CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{Axis{…}}})
    @ Zygote ~/.julia/packages/Zygote/nsBv0/src/compiler/interface.jl:147
 [38] (::OptimizationZygoteExt.var"#38#56"{OptimizationZygoteExt.var"#37#55"{}})(::ComponentVector{Float32, CuArray{…}, Tuple{…}}, ::ComponentVector{Float32, CuArray{…}, Tuple{…}})
    @ OptimizationZygoteExt ~/.julia/packages/OptimizationBase/32Mb0/ext/OptimizationZygoteExt.jl:93
 [39] macro expansion
    @ ~/.julia/packages/OptimizationOptimisers/AOkbT/src/OptimizationOptimisers.jl:68 [inlined]
 [40] macro expansion
    @ ~/.julia/packages/Optimization/jWtfU/src/utils.jl:32 [inlined]
 [41] __solve(cache::OptimizationCache{OptimizationFunction{…}, OptimizationBase.ReInitCache{…}, Nothing, Nothing, Nothing, Nothing, Nothing, Adam, Base.Iterators.Cycle{…}, Bool, NeuralPDE.var"#210#214"{…}})
    @ OptimizationOptimisers ~/.julia/packages/OptimizationOptimisers/AOkbT/src/OptimizationOptimisers.jl:66
 [42] solve!(cache::OptimizationCache{OptimizationFunction{…}, OptimizationBase.ReInitCache{…}, Nothing, Nothing, Nothing, Nothing, Nothing, Adam, Base.Iterators.Cycle{…}, Bool, NeuralPDE.var"#210#214"{…}})
    @ SciMLBase ~/.julia/packages/SciMLBase/sakPO/src/solve.jl:188
 [43] solve(::OptimizationProblem{true, OptimizationFunction{…}, ComponentVector{…}, SciMLBase.NullParameters, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, @Kwargs{}}, ::Adam; kwargs::@Kwargs{callback::NeuralPDE.var"#210#214"{}, maxiters::Int64})
    @ SciMLBase ~/.julia/packages/SciMLBase/sakPO/src/solve.jl:96
 [44] __solve(::ODEProblem{…}, ::NNODE{…}; dt::Nothing, timeseries_errors::Bool, save_everystep::Bool, adaptive::Bool, abstol::Float32, reltol::Float32, verbose::Bool, saveat::Float64, maxiters::Int64, tstops::Nothing)
    @ NeuralPDE ~/NeuralPDE.jl/src/ode_solve.jl:466
 [45] __solve
    @ ~/NeuralPDE.jl/src/ode_solve.jl:358 [inlined]
 [46] solve_call(_prob::ODEProblem{…}, args::NNODE{…}; merge_callbacks::Bool, kwargshandle::Nothing, kwargs::@Kwargs{})
    @ DiffEqBase ~/.julia/packages/DiffEqBase/DS1sd/src/solve.jl:612
 [47] solve_call
    @ ~/.julia/packages/DiffEqBase/DS1sd/src/solve.jl:569 [inlined]
 [48] #solve_up#53
    @ ~/.julia/packages/DiffEqBase/DS1sd/src/solve.jl:1080 [inlined]
 [49] solve_up
    @ ~/.julia/packages/DiffEqBase/DS1sd/src/solve.jl:1066 [inlined]
 [50] #solve#51
    @ ~/.julia/packages/DiffEqBase/DS1sd/src/solve.jl:1003 [inlined]
Some type information was truncated. Use `show(err)` to see complete types.

Broadcasting function works:

# This works
out = CuArray(rand(2, 100))
p_ = CuArray(p)
t = CuArray(rand(100))
du = similar(out)
NeuralPDE.gpu_broadcast(prob_oop.f, du, out, p_, t; workgroupsize = 64, ndrange = 100)
du

@ChrisRackauckas, I am not familiar on how to interpret this 😅, it says try-catch is not supported but there is no try catch, am I missing anything?

@sathvikbhagavan sathvikbhagavan changed the title [WIP] feat: compatibility of CUDA with NNODE [WIP] feat: compatibility of NNODE with CUDA Jun 18, 2024
@sathvikbhagavan sathvikbhagavan force-pushed the sb/gpu_ode branch 2 times, most recently from 69ad62b to e436d1a Compare June 29, 2024 11:22
@sathvikbhagavan
Copy link
Member Author

I guess this isn't needed anymore. #882 fixed it.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant