Skip to content

Bio-Electra - Small and efficient discriminatively pre-trained language representation models for biomedical text mining

License

Notifications You must be signed in to change notification settings

SciCrunch/bio_electra

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bio-Electra

export BIO_ELECTRA_HOME=/full/path/to/bio_electra/repository

GPU requirements

For anything besides the transformers package used for BERT NER experiments, you need Tensorflow 1.15 and CUDA 10.0 for GPU. For BERT NER experiments on GPU, you need Tensorflow 2+ and Cuda 10.1 (i.e. another (virtual) machine) due to tranformers Python library requirements.

Setup virtual environment

Ensure you have virtual environment support (e.g. for Ubuntu)

sudo apt-get install python3-venv
python3 -m venv --system-site-packages $BIO_ELECTRA_HOME/venv
source $BIO_ELECTRA_HOME/venv/bin/activate

pip install --upgrade pip
pip install tensorflow-gpu==1.15
pip install sklearn
pip install hyperopt

For BERT NER tests with Huggingface transformers python package

python3 -m venv --system-site-packages $BIO_ELECTRA_HOME/tf2_venv
source $BIO_ELECTRA_HOME/tf2_venv/bin/activate
pip install -U pip
pip install tensorflow-gpu==2.1
pip install transformers
pip install fastprogress
pip install seqeval
pip install torch torchvision

Download BERT BASE and Electra Small++ models

Pretraining

The pre-trained Bio-ELECTRA and Bio-ELECTRA++ small ELECTRA models are available at Zenodo. DOI

For pretraining, you need the prepare your corpus into files one line per sentence and documents separated by an empty line and put them under a single directory.

Bio-ELECTRA

The corpus is comprised of all PubMed abstracts with PMID >= 10,000,000 (19.2 million abstracts). An example pretraining configuration is in the pmc_config.json.example file. Please copy this file to pmc_config.json and adjust the full paths according to your system's directory structure. The pretraining takes 3 weeks on a RTX 2070 8GB GPU. Afterwards, assuming all of the preprocessed abstract files are under $BIO_ELECTRA_HOME/electra/data/electra_pretraining/pmc_abstracts, you can run the following to generate the Bio-ELECTRA language representation model.

cd $BIO_ELECTRA_HOME/electra
./build_pmc_pretrain_dataset.sh
./pretrain_pmc_model.sh

Bio-ELECTRA++

The corpus is all open access full papers from PubMed. You need around 500GB or more free space for pretraining preprocessing and data generation. The configuration parameters are in pmc_config_v2.json file. The pretraining takes 3 weeks on a RTX 2070 8GB GPU. An example pretraining configuration is in pmc_config_v2.json.example file. Please copy this file to pmc_config_v2.json and adjust the full paths according to your system's directory structure. The pretraining takes 3 weeks on a RTX 2070 8GB GPU.

cd $BIO_ELECTRA_HOME/electra
./build_pmc_oai_full_pretrain_dataset.sh
./pretrain_pmc_model_v2.sh

Datasets

All of the datasets are available at $BIO_ELECTRA_HOME/electra/data/finetuning_data.

ELECTRA/Bio-ELECTRA biomedical text mining experiments

Biomedical QA training/evaluation

train_bioasq_qa_baseline.sh # ELECTRA-Small++
train_bioasq_qa_pmc_1_8M.sh  # Bio-ELECTRA
train_bioasq_qa_pmc_v2_3_6M.sh  # Bio-ELECTRA++

Evaluation

After training, the results are stored under $BIO_ELECTRA_HOME/electra/data/models/electra_small/results/, $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_1_8_M/results/ and $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_v2_3_6_M/results/ for Electra-Small++, Bio-ELECTRA and Bio-ELECTRA++, respectively.

For Bio-ELECTRA, copy the evaluation result files $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_1_8_M/results/bioasq_results.txt and $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_1_8_M/results/bioasq_results.pkl to $BIO_ELECTRA_HOME/electra/pmc_results/qa_factoid/pmc_1_8M directory. Similarly, copy corresponding files for Electra-Small++ and Bio-ELECTRA++ from $BIO_ELECTRA_HOME/electra/data/models directory to $BIO_ELECTRA_HOME/electra/pmc_results/qa_factoid/baseline and BIO_ELECTRA_HOME/electra/pmc_results/qa_factoid/pmc_v2_3_6M, respectively.

Assuming the results are stored under $BIO_ELECTRA_HOME/electra/pmc_results/qa_factoid

python show_qa_performance.py --mode baseline # ELECTRA-Small++
python show_qa_performance.py --mode bio-electra
python show_qa_performance.py --mode bio-electra++

Yes/No Question Classification training/evaluation

The yes/no question classification training/testing data is available at $BIO_ELECTRA_HOME/electra/data/finetuning_data/yesno. This dataset has no development set.

train_yesno_baseline.sh # ELECTRA-Small++
train_yesno.sh # Bio-ELECTRA
train_yesno_v2_3_6M.sh # Bio-ELECTRA++

Evaluation

After training, the results are stored under $BIO_ELECTRA_HOME/electra/data/models/electra_small/results/, $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_1_8_M/results/ and $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_v2_3_6_M/results/ for Electra-Small++, Bio-ELECTRA and Bio-ELECTRA++, respectively.

For Bio-ELECTRA, copy the evaluation result files $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_1_8_M/results/yesno_results.txt and $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_1_8_M/results/yesno_results.pkl to $BIO_ELECTRA_HOME/electra/pmc_results/yesno/pmc_1_8M directory. Similarly, copy corresponding files for Electra-Small++ and Bio-ELECTRA++ from $BIO_ELECTRA_HOME/electra/data/models directory to $BIO_ELECTRA_HOME/electra/pmc_results/yesno/baseline and BIO_ELECTRA_HOME/electra/pmc_results/yesno/pmc_v2_3_6M, respectively.

Assuming the results are stored under $BIO_ELECTRA_HOME/electra/pmc_results/yes_no the following will show Bio-ELECTRA, ELECTRA-Small++ and Bio-ELECTRA++ test results;

python yesno_perf_stats.py

Reranker training/evaluation

The reranker training/testing data is available at $BIO_ELECTRA_HOME/data/bioasq_reranker. This dataset is annotated by a single annotator and has no developement set.

./train_reranker_baseline.sh # ELECTRA-Small++
./train_reranker.sh # Bio-ELECTRA
./train_reranker_v2_3_6M.sh # Bio-ELECTRA++

Training with weighted objective function

./train_weighted_reranker_baseline.sh # ELECTRA-Small++ 
./train_weighted_reranker.sh # Bio-ELECTRA
./train_weighted_reranker_v2_3_6M.sh # Bio-ELECTRA++

Evaluation

./predict_reranker_baseline.sh # ELECTRA-Small++
./predict_reranker.sh # Bio-ELECTRA
./predict_reranker_v2_3_6M.sh

Prediction using weighted reranking models

./predict_weighted_reranker_baseline.sh
./predict_weighted_reranker.sh
./predict_weighted_reranker_v2_3_6M.sh
python show_reranker_performance.py --mode baseline
python show_reranker_performance.py --mode bio-electra
python show_reranker_performance.py --mode bio-electra++
python show_reranker_performance.py --mode weighted-baseline
python show_reranker_performance.py --mode weighted-bio-electra
python show_reranker_performance.py --mode weightede-bio-electra++

Relation extraction training/evaluation

./train_re_gad_baseline.sh  # ELECTRA-Small++
./train_re_gad.sh # Bio-ELECTRA
./train_re_gad_v2_3_6M.sh # Bio-ELECTRA++
./train_re_chemprot_baseline.sh # ELECTRA-Small++
./train_re_chemprot.sh # Bio-ELECTRA
./train_re_chemprot_v2_3_6M.sh # Bio-ELECTRA++

Evaluation

python show_re_performance.py --mode gad-baseline
python show_re_performance.py --mode gad-bio-electra
python show_re_performance.py --mode gad-bio-electra++
python show_re_performance.py --mode chemprot-baseline
python show_re_performance.py --mode chemprot-bio-electra
python show_re_performance.py --mode chemprot-bio-electra++

Biomedical named entity recognition training/evaluation

The datasets are located under the $BIO_ELECTRA_HOME/electra/data/finetuning_data directory.

./train_bc4chemd_ner_baseline.sh # ELECTRA-Small++
./train_bc4chemd_ner.sh # Bio-ELECTRA
./train_bc4chemd_ner_v2_3_6M.sh # Bio-ELECTRA++
./train_bc2gm_ner_baseline.sh # ELECTRA-Small++
./train_bc2gm_ner.sh # Bio-ELECTRA
./train_bc2gm_ner_v2_3_6M.sh # Bio-ELECTRA++
./train_linnaeus_ner_baseline.sh # ELECTRA-Small++
./train_linnaeus_ner.sh # Bio-ELECTRA
./train_linnaeus_ner_v2_3_6M.sh # Bio-ELECTRA++
./train_ncbi_disease_ner_baseline.sh # ELECTRA-Small++
./train_ncbi_disease_ner.sh # Bio-ELECTRA
./train_ncbi_disease_ner_v2_3_6M.sh # Bio-ELECTRA++

Evaluation

After training, the results are stored under $BIO_ELECTRA_HOME/electra/data/models/electra_small/results/, $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_1_8_M/results/ and $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_v2_3_6_M/results/ for Electra-Small++, Bio-ELECTRA and Bio-ELECTRA++, respectively.

For Bio-ELECTRA bc4chemd NER data set, copy the evaluation result files
$BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_1_8_M/results/bc4chemd_results.txt and $BIO_ELECTRA_HOME/electra/data/models/pmc_electra_small_1_8_M/results/bc4chemd_results.txt to $BIO_ELECTRA_HOME/electra/pmc_results/ner/pmc_1_8M/bc4chemd directory. Similarly, copy corresponding files for Electra-Small++ and Bio-ELECTRA++ from $BIO_ELECTRA_HOME/electra/data/models directory to $BIO_ELECTRA_HOME/electra/pmc_results/ner/baseline/bc4chemd and BIO_ELECTRA_HOME/electra/pmc_results/ner/pmc_v2_3_6M/bc4chemd, respectively. The other three NER datasets have the prefix bc2gm, linnaeus and ncbi_disease.

Assuming the results are stored under $BIO_ELECTRA_HOME/electra/pmc_results/ner the following will show Bio-ELECTRA, ELECTRA-Small++ and Bio-ELECTRA++ test results;

cd $BIO_ELECTRA_HOME/electra
python ner_perf_stats.py

BERT biomedical text mining experiments

Biomedical QA training/evaluation

./test_qa_bert_batch.sh
./qa_bert_perf_extract.sh > /tmp/bert_qa_perf.txt
python show_bert_perf_stats.py

Yes/No Question Classification training/evaluation

./train_yesno_qc_bert_batch.sh
./test_yesno_qc_bert_batch.sh 
python show_bert_yesno_perf_stats.py

Reranker training/evaluation

./train_bert_reranker_batch.sh
python show_reranker_performance.py

Relation extraction training/evaluation

./train_bio_re_gad_bert_batch.sh
./test_bio_re_gad_bert_batch.sh
python show_re_performance.py --mode gad

./train_bio_re_chemprot_bert_batch.sh
./test_bio_re_chemprot_bert_batch.sh
python  show_re_performance.py --mode chemprot

BERT biomedical NER experiments using transformers Python package

The four NER datasets are located under $BIO_ELECTRA_HOME/bert_ner/data directory.

Training/prediction

The following scripts train ten randomly initialized models on the corresponding training sets and evaluate the models on their corresponding test sets.

cd $BIO_ELECTRA_HOME/bert_ner
./run_tf_BC4CHEMD_batch.sh 
./run_tf_BC2GM_batch.sh
./run_tf_linnaeus_batch.sh
./run_tf_NCBI_disease_batch.sh

Evaluation

python perf_stats.py --mode bc4chemd
python perf_stats.py --mode bc2gm
python perf_stats.py --mode linnaeus
python perf_stats.py --mode ncbi-disease

About

Bio-Electra - Small and efficient discriminatively pre-trained language representation models for biomedical text mining

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published