Skip to content

Commit

Permalink
Fix RT-DETR weights initialization (huggingface#31724)
Browse files Browse the repository at this point in the history
* Fix init for rt-detr heads

* Fixup

* Add separate prior_prob value to config for initialization

* Add bbox init

* Change to 1 / num_labels init

* Adjust weights init test

* Fix style for test
  • Loading branch information
qubvel authored Jul 3, 2024
1 parent b975216 commit 048f599
Show file tree
Hide file tree
Showing 3 changed files with 52 additions and 13 deletions.
5 changes: 5 additions & 0 deletions src/transformers/models/rt_detr/configuration_rt_detr.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,9 @@ class RTDetrConfig(PretrainedConfig):
Args:
initializer_range (`float`, *optional*, defaults to 0.01):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_bias_prior_prob (`float`, *optional*):
The prior probability used by the bias initializer to initialize biases for `enc_score_head` and `class_embed`.
If `None`, `prior_prob` computed as `prior_prob = 1 / (num_labels + 1)` while initializing model weights.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
batch_norm_eps (`float`, *optional*, defaults to 1e-05):
Expand Down Expand Up @@ -179,6 +182,7 @@ class RTDetrConfig(PretrainedConfig):
def __init__(
self,
initializer_range=0.01,
initializer_bias_prior_prob=None,
layer_norm_eps=1e-5,
batch_norm_eps=1e-5,
# backbone
Expand Down Expand Up @@ -239,6 +243,7 @@ def __init__(
**kwargs,
):
self.initializer_range = initializer_range
self.initializer_bias_prior_prob = initializer_bias_prior_prob
self.layer_norm_eps = layer_norm_eps
self.batch_norm_eps = batch_norm_eps
# backbone
Expand Down
27 changes: 20 additions & 7 deletions src/transformers/models/rt_detr/modeling_rt_detr.py
Original file line number Diff line number Diff line change
Expand Up @@ -1148,14 +1148,27 @@ class RTDetrPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
"""Initalize the weights"""

"""initialize conv/fc bias value according to a given probability value."""
if isinstance(module, nn.Linear) and hasattr(module, "class_embed"):
prior_prob = self.config.initializer_range
"""initialize linear layer bias value according to a given probability value."""
if isinstance(module, (RTDetrForObjectDetection, RTDetrDecoder)):
if module.class_embed is not None:
for layer in module.class_embed:
prior_prob = self.config.initializer_bias_prior_prob or 1 / (self.config.num_labels + 1)
bias = float(-math.log((1 - prior_prob) / prior_prob))
nn.init.xavier_uniform_(layer.weight)
nn.init.constant_(layer.bias, bias)

if module.bbox_embed is not None:
for layer in module.bbox_embed:
nn.init.constant_(layer.layers[-1].weight, 0)
nn.init.constant_(layer.layers[-1].bias, 0)

if isinstance(module, RTDetrModel):
prior_prob = self.config.initializer_bias_prior_prob or 1 / (self.config.num_labels + 1)
bias = float(-math.log((1 - prior_prob) / prior_prob))
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, bias)
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
nn.init.xavier_uniform_(module.enc_score_head.weight)
nn.init.constant_(module.enc_score_head.bias, bias)

if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
Expand Down
33 changes: 27 additions & 6 deletions tests/models/rt_detr/test_modeling_rt_detr.py
Original file line number Diff line number Diff line change
Expand Up @@ -584,6 +584,11 @@ def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

configs_no_init = _config_zero_init(config)
configs_no_init.initializer_bias_prior_prob = 0.2
bias_value = -1.3863 # log_e ((1 - 0.2) / 0.2)

failed_cases = []

for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
# Skip the check for the backbone
Expand All @@ -594,20 +599,36 @@ def test_initialization(self):

for name, param in model.named_parameters():
if param.requires_grad:
if (
if ("class_embed" in name and "bias" in name) or "enc_score_head.bias" in name:
bias_tensor = torch.full_like(param.data, bias_value)
if not torch.allclose(param.data, bias_tensor, atol=1e-4):
failed_cases.append(
f"Parameter {name} of model {model_class} seems not properly initialized. "
f"Biases should be initialized to {bias_value}, got {param.data}"
)
elif (
"level_embed" in name
or "sampling_offsets.bias" in name
or "value_proj" in name
or "output_proj" in name
or "reference_points" in name
or "enc_score_head.weight" in name
or ("class_embed" in name and "weight" in name)
or name in backbone_params
):
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
mean = param.data.mean()
round_mean = (mean * 1e9).round() / 1e9
round_mean = round_mean.item()
if round_mean not in [0.0, 1.0]:
failed_cases.append(
f"Parameter {name} of model {model_class} seems not properly initialized. "
f"Mean is {round_mean}, but should be in [0, 1]"
)

message = "\n" + "\n".join(failed_cases)
self.assertTrue(not failed_cases, message)

@parameterized.expand(["float32", "float16", "bfloat16"])
@require_torch_gpu
Expand Down

0 comments on commit 048f599

Please sign in to comment.