-
Notifications
You must be signed in to change notification settings - Fork 29
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add fast configs for 3 x sunrgbd and scannet * add new model links toreadme * remove extra prints
- Loading branch information
Showing
9 changed files
with
1,189 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -4,7 +4,7 @@ | |
# ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection | ||
|
||
**News**: | ||
* :fire: October, 2021. Our paper is accepted at [WACV 2022](https://wacv2022.thecvf.com). Stay tuned for 5 times faster and more accurate models for indoor datasets. | ||
* :fire: October, 2021. Our paper is accepted at [WACV 2022](https://wacv2022.thecvf.com). We simplify 3d neck to make indoor models much faster and accurate. For example, this improves `ScanNet` `mAP` by more than 2%. Please find updated configs in [configs/imvoxelnet/*_fast.py](https://github.com/saic-vul/imvoxelnet/tree/master/configs/imvoxelnet) and [models](https://github.com/saic-vul/imvoxelnet/releases/tag/v1.2). | ||
* :fire: August, 2021. We adapt center sampling for indoor detection. For example, this improves `ScanNet` `mAP` by more than 5%. Please find updated configs in [configs/imvoxelnet/*_top27.py](https://github.com/saic-vul/imvoxelnet/tree/master/configs/imvoxelnet) and [models](https://github.com/saic-vul/imvoxelnet/releases/tag/v1.1). | ||
* :fire: July, 2021. We update `ScanNet` image preprocessing both [here](https://github.com/saic-vul/imvoxelnet/pull/21) and in [mmdetection3d](https://github.com/open-mmlab/mmdetection3d/pull/696). | ||
* :fire: June, 2021. `ImVoxelNet` for `KITTI` is now [supported](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/imvoxelnet) in [mmdetection3d](https://github.com/open-mmlab/mmdetection3d). | ||
|
@@ -87,14 +87,16 @@ python tools/test.py configs/imvoxelnet/imvoxelnet_kitti.py \ | |
|
||
### Models | ||
|
||
| Dataset | Object Classes | Center Sampling | Download | | ||
|:---------:|:--------------:|:---------------:|:--------:| | ||
| SUN RGB-D | 37 from Total3dUnderstanding | ✘ <br> ✔ | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210525_091810.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210525_091810_atlas_total_sunrgbd.log) | [config](configs/imvoxelnet/imvoxelnet_total_sunrgbd.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210808_005013.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210808_005013_imvoxelnet_total_sunrgbd_top27.log) | [config](configs/imvoxelnet/imvoxelnet_total_sunrgbd_top27.py)| | ||
| SUN RGB-D | 30 from PerspectiveNet | ✘ <br> ✔ | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210526_072029.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210526_072029_atlas_perspective_sunrgbd.log) | [config](configs/imvoxelnet/imvoxelnet_perspective_sunrgbd.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210809_114832.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210809_114832_imvoxelnet_perspective_sunrgbd_top27.log) | [config](configs/imvoxelnet/imvoxelnet_perspective_sunrgbd_top27.py)| | ||
| SUN RGB-D | 10 from VoteNet | ✘ <br> ✔ | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210428_124351.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210428_124351_atlas_sunrgbd.log) | [config](configs/imvoxelnet/imvoxelnet_sunrgbd.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210809_112435.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210809_112435_imvoxelnet_sunrgbd_top27.log) | [config](configs/imvoxelnet/imvoxelnet_sunrgbd_top27.py)| | ||
| ScanNet | 18 from VoteNet | ✘ <br> ✔ | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210520_223109.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210520_223109_atlas_scannet.log) | [config](configs/imvoxelnet/imvoxelnet_scannet.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210808_070616.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210808_070616_imvoxelnet_scannet_top27.log) | [config](configs/imvoxelnet/imvoxelnet_scannet_top27.py)| | ||
| KITTI | Car | ✘ | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210503_214214.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210503_214214_atlas_kitti.log) | [config](configs/imvoxelnet/imvoxelnet_kitti.py) | | ||
| nuScenes | Car | ✘ | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210505_131108.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210505_131108_atlas_nuscenes.log) | [config](configs/imvoxelnet/imvoxelnet_nuscenes.py) | | ||
`v2` adds center sampling for indoor scenario. `v3` simplifies 3d neck for indoor scenario. Differences are discussed in [v2](https://arxiv.org/abs/2106.01178v2) and [v3](https://arxiv.org/abs/2106.01178v3) preprints. | ||
|
||
| Dataset | Object Classes | Version | Download | | ||
|:---------:|:--------------:|:-------:|:--------:| | ||
| SUN RGB-D | 37 from <br> Total3dUnderstanding | v1 | [email protected]: 41.5 <br> v2 | [email protected]: 42.7 <br> v3 | [email protected]: 43.7 | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210525_091810.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210525_091810_atlas_total_sunrgbd.log) | [config](configs/imvoxelnet/imvoxelnet_total_sunrgbd.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210808_005013.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210808_005013_imvoxelnet_total_sunrgbd_top27.log) | [config](configs/imvoxelnet/imvoxelnet_total_sunrgbd_top27.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.2/20211007_105247.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.2/20211007_105247_imvoxelnet_total_sunrgbd_fast.log) | [config](configs/imvoxelnet/imvoxelnet_total_sunrgbd_fast.py)| | ||
| SUN RGB-D | 30 from <br> PerspectiveNet | v1 | [email protected]: 44.9 <br> v2 | [email protected]: 47.2 <br> v3 | [email protected]: 48.7 | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210526_072029.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210526_072029_atlas_perspective_sunrgbd.log) | [config](configs/imvoxelnet/imvoxelnet_perspective_sunrgbd.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210809_114832.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210809_114832_imvoxelnet_perspective_sunrgbd_top27.log) | [config](configs/imvoxelnet/imvoxelnet_perspective_sunrgbd_top27.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.2/20211007_105254.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.2/20211007_105254_imvoxelnet_perspective_sunrgbd_fast.log) | [config](configs/imvoxelnet/imvoxelnet_perspective_sunrgbd_fast.py)| | ||
| SUN RGB-D | 10 from VoteNet | v1 | [email protected]: 38.8 <br> v2 | [email protected]: 39.4 <br> v3 | [email protected]: 40.7 | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210428_124351.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210428_124351_atlas_sunrgbd.log) | [config](configs/imvoxelnet/imvoxelnet_sunrgbd.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210809_112435.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210809_112435_imvoxelnet_sunrgbd_top27.log) | [config](configs/imvoxelnet/imvoxelnet_sunrgbd_top27.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.2/20211007_105255.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.2/20211007_105255_imvoxelnet_sunrgbd_fast.log) | [config](configs/imvoxelnet/imvoxelnet_sunrgbd_fast.py)| | ||
| ScanNet | 18 from VoteNet | v1 | [email protected]: 40.6 <br> v2 | [email protected]: 45.7 <br> v3 | [email protected]: 48.1 | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210520_223109.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210520_223109_atlas_scannet.log) | [config](configs/imvoxelnet/imvoxelnet_scannet.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210808_070616.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.1/20210808_070616_imvoxelnet_scannet_top27.log) | [config](configs/imvoxelnet/imvoxelnet_scannet_top27.py) <br> [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.2/20211007_113826.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.2/20211007_113826_imvoxelnet_scannet_fast.log) | [config](configs/imvoxelnet/imvoxelnet_scannet_fast.py)| | ||
| KITTI | Car | v1 | [email protected]: 17.8 | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210503_214214.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210503_214214_atlas_kitti.log) | [config](configs/imvoxelnet/imvoxelnet_kitti.py) | | ||
| nuScenes | Car | v1 | AP: 51.8 | [model](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210505_131108.pth) | [log](https://github.com/saic-vul/imvoxelnet/releases/download/v1.0/20210505_131108_atlas_nuscenes.log) | [config](configs/imvoxelnet/imvoxelnet_nuscenes.py) | | ||
|
||
### Example Detections | ||
|
||
|
127 changes: 127 additions & 0 deletions
127
configs/imvoxelnet/imvoxelnet_perspective_sunrgbd_fast.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
model = dict( | ||
type='ImVoxelNet', | ||
pretrained='torchvision://resnet50', | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN', requires_grad=False), | ||
norm_eval=True, | ||
style='pytorch'), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
num_outs=4), | ||
neck_3d=dict( | ||
type='FastIndoorImVoxelNeck', | ||
in_channels=256, | ||
out_channels=128, | ||
n_blocks=[1, 1, 1]), | ||
bbox_head=dict( | ||
type='SunRgbdImVoxelHeadV2', | ||
n_classes=30, | ||
n_channels=128, | ||
n_reg_outs=7, | ||
n_scales=3, | ||
limit=27, | ||
centerness_topk=18), | ||
n_voxels=(40, 40, 16), | ||
voxel_size=(.16, .16, .16)) | ||
train_cfg = dict() | ||
test_cfg = dict( | ||
nms_pre=1000, | ||
nms_thr=.15, | ||
use_rotate_nms=True, | ||
score_thr=.01) | ||
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
|
||
dataset_type = 'SunRgbdPerspectiveMultiViewDataset' | ||
data_root = 'data/sunrgbd/' | ||
class_names = ('recycle_bin', 'cpu', 'paper', 'toilet', 'stool', 'whiteboard', 'coffee_table', 'picture', | ||
'keyboard', 'dresser', 'painting', 'bookshelf', 'night_stand', 'endtable', 'drawer', 'sink', | ||
'monitor', 'computer', 'cabinet', 'shelf', 'lamp', 'garbage_bin', 'box', 'bed', 'sofa', | ||
'sofa_chair', 'pillow', 'desk', 'table', 'chair') | ||
|
||
train_pipeline = [ | ||
dict(type='LoadAnnotations3D'), | ||
dict( | ||
type='MultiViewPipeline', | ||
n_images=1, | ||
transforms=[ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='RandomFlip', flip_ratio=0.5), | ||
dict(type='Resize', img_scale=[(512, 384), (768, 576)], multiscale_mode='range', keep_ratio=True), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32)]), | ||
dict(type='SunRgbdRandomFlip'), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict(type='Collect3D', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d'])] | ||
test_pipeline = [ | ||
dict( | ||
type='MultiViewPipeline', | ||
n_images=1, | ||
transforms=[ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='Resize', img_scale=(640, 480), keep_ratio=True), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32)]), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names, with_label=False), | ||
dict(type='Collect3D', keys=['img'])] | ||
data = dict( | ||
samples_per_gpu=4, | ||
workers_per_gpu=4, | ||
train=dict( | ||
type='RepeatDataset', | ||
times=2, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'sunrgbd_perspective_infos_train.pkl', | ||
pipeline=train_pipeline, | ||
classes=class_names, | ||
filter_empty_gt=True, | ||
box_type_3d='Depth')), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'sunrgbd_perspective_infos_val.pkl', | ||
pipeline=test_pipeline, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='Depth'), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'sunrgbd_perspective_infos_val.pkl', | ||
pipeline=test_pipeline, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='Depth')) | ||
|
||
optimizer = dict( | ||
type='AdamW', | ||
lr=0.0001, | ||
weight_decay=0.0001, | ||
paramwise_cfg=dict( | ||
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)})) | ||
optimizer_config = dict(grad_clip=dict(max_norm=35., norm_type=2)) | ||
lr_config = dict(policy='step', step=[8, 11]) | ||
total_epochs = 12 | ||
|
||
checkpoint_config = dict(interval=1, max_keep_ckpts=1) | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
dict(type='TensorboardLoggerHook') | ||
]) | ||
evaluation = dict(interval=1) | ||
dist_params = dict(backend='nccl') | ||
find_unused_parameters = True # todo: fix number of FPN outputs | ||
log_level = 'INFO' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
model = dict( | ||
type='ImVoxelNet', | ||
pretrained='torchvision://resnet50', | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
num_stages=4, | ||
out_indices=(0, 1, 2, 3), | ||
frozen_stages=1, | ||
norm_cfg=dict(type='BN', requires_grad=False), | ||
norm_eval=True, | ||
style='pytorch'), | ||
neck=dict( | ||
type='FPN', | ||
in_channels=[256, 512, 1024, 2048], | ||
out_channels=256, | ||
num_outs=4), | ||
neck_3d=dict( | ||
type='FastIndoorImVoxelNeck', | ||
in_channels=256, | ||
out_channels=128, | ||
n_blocks=[1, 1, 1]), | ||
bbox_head=dict( | ||
type='ScanNetImVoxelHeadV2', | ||
loss_bbox=dict(type='AxisAlignedIoULoss', loss_weight=1.0), | ||
n_classes=18, | ||
n_channels=128, | ||
n_reg_outs=6, | ||
n_scales=3, | ||
limit=27, | ||
centerness_topk=18), | ||
voxel_size=(.16, .16, .16), | ||
n_voxels=(40, 40, 16)) | ||
train_cfg = dict() | ||
test_cfg = dict( | ||
nms_pre=1000, | ||
iou_thr=.25, | ||
score_thr=.01) | ||
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
|
||
dataset_type = 'ScanNetMultiViewDataset' | ||
data_root = 'data/scannet/' | ||
class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', | ||
'bookshelf', 'picture', 'counter', 'desk', 'curtain', | ||
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', | ||
'garbagebin') | ||
|
||
train_pipeline = [ | ||
dict(type='LoadAnnotations3D'), | ||
dict( | ||
type='MultiViewPipeline', | ||
n_images=20, | ||
transforms=[ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='Resize', img_scale=(640, 480), keep_ratio=True), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=(480, 640)) | ||
]), | ||
dict(type='RandomShiftOrigin', std=(.7, .7, .0)), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names), | ||
dict(type='Collect3D', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d']) | ||
] | ||
test_pipeline = [ | ||
dict( | ||
type='MultiViewPipeline', | ||
n_images=50, | ||
transforms=[ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='Resize', img_scale=(640, 480), keep_ratio=True), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size=(480, 640)) | ||
]), | ||
dict(type='DefaultFormatBundle3D', class_names=class_names, with_label=False), | ||
dict(type='Collect3D', keys=['img']) | ||
] | ||
data = dict( | ||
samples_per_gpu=1, | ||
workers_per_gpu=1, | ||
train=dict( | ||
type='RepeatDataset', | ||
times=3, | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'scannet_infos_train.pkl', | ||
pipeline=train_pipeline, | ||
classes=class_names, | ||
filter_empty_gt=True, | ||
box_type_3d='Depth')), | ||
val=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'scannet_infos_val.pkl', | ||
pipeline=test_pipeline, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='Depth'), | ||
test=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
ann_file=data_root + 'scannet_infos_val.pkl', | ||
pipeline=test_pipeline, | ||
classes=class_names, | ||
test_mode=True, | ||
box_type_3d='Depth') | ||
) | ||
|
||
optimizer = dict( | ||
type='AdamW', | ||
lr=0.0001, | ||
weight_decay=0.0001, | ||
paramwise_cfg=dict( | ||
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)})) | ||
optimizer_config = dict(grad_clip=dict(max_norm=35., norm_type=2)) | ||
lr_config = dict(policy='step', step=[8, 11]) | ||
total_epochs = 12 | ||
|
||
checkpoint_config = dict(interval=1, max_keep_ckpts=1) | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
dict(type='TensorboardLoggerHook') | ||
]) | ||
evaluation = dict(interval=1) | ||
dist_params = dict(backend='nccl') | ||
find_unused_parameters = True # todo: fix number of FPN outputs | ||
log_level = 'INFO' | ||
load_from = None | ||
resume_from = None | ||
workflow = [('train', 1)] |
Oops, something went wrong.