Deep Impression: Audiovisual Deep Residual Networks for Multimodal Apparent Personality Trait Recognition
This repository contains the implementation of the model that won the third place in the ChaLearn First Impressions Challenge @ ECCV2016.
Yağmur Güçlütürk, Umut Güçlü, Marcel van Gerven, Rob van Lier. Deep Impression: Audiovisual Deep Residual Networks for Multimodal Apparent Personality Trait Recognition. ChaLearn Looking at People Workshop on Apparent Personality Analysis, ECCV Workshop proceedings, LNCS, Springer, 2016, in press.
Here, we develop an audiovisual deep residual network for multimodal apparent personality trait recognition. The network is trained end-to-end for predicting the Big Five personality traits of people from their videos. That is, the network does not require any feature engineering or visual analysis such as face detection, face landmark alignment or facial expression recognition. Recently, the network won the third place in the ChaLearn First Impressions Challenge @ ECCV2016 with a test accuracy of 0.9109.
System: CUDA Toolkit, cuDNN (and a suitable NVIDIA GPU).
Python: chainer, librosa, numpy, skvideo.
Please cite the above paper if you use the model in your work.