Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
…nto more-plots
  • Loading branch information
SamFerracin committed Oct 22, 2024
2 parents e9cad6c + 1b6a3fc commit 0486fb8
Show file tree
Hide file tree
Showing 5 changed files with 180 additions and 2 deletions.
2 changes: 2 additions & 0 deletions qiskit_ibm_runtime/execution_span/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,12 +30,14 @@
.. autosummary::
:toctree: ../stubs/
DoubleSliceSpan
ExecutionSpan
ExecutionSpans
ShapeType
SliceSpan
"""

from .double_slice_span import DoubleSliceSpan
from .execution_span import ExecutionSpan, ShapeType
from .execution_spans import ExecutionSpans
from .slice_span import SliceSpan
79 changes: 79 additions & 0 deletions qiskit_ibm_runtime/execution_span/double_slice_span.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""DoubleSliceSpan"""

from __future__ import annotations

from datetime import datetime
from typing import Iterable

import math
import numpy as np
import numpy.typing as npt

from .execution_span import ExecutionSpan, ShapeType


class DoubleSliceSpan(ExecutionSpan):
"""An :class:`~.ExecutionSpan` for data stored in a sliceable format.
This type of execution span references pub result data by assuming that it is a sliceable
portion of the data where the shots are the outermost slice and the rest of the data is flattened.
Therefore, for each pub dependent on this span, the constructor accepts two :class:`slice` objects,
along with the corresponding shape of the data to be sliced; in contrast to
:class:`~.SliceSpan`, this class does not assume that *all* shots for a particular set of parameter
values are contiguous in the array of data.
Args:
start: The start time of the span, in UTC.
stop: The stop time of the span, in UTC.
data_slices: A map from pub indices to ``(shape_tuple, slice, slice)``.
"""

def __init__(
self,
start: datetime,
stop: datetime,
data_slices: dict[int, tuple[ShapeType, slice, slice]],
):
super().__init__(start, stop)
self._data_slices = data_slices

def __eq__(self, other: object) -> bool:
return isinstance(other, DoubleSliceSpan) and (
self.start == other.start
and self.stop == other.stop
and self._data_slices == other._data_slices
)

@property
def pub_idxs(self) -> list[int]:
return sorted(self._data_slices)

@property
def size(self) -> int:
size = 0
for shape, args_sl, shots_sl in self._data_slices.values():
size += len(range(math.prod(shape[:-1]))[args_sl]) * len(range(shape[-1])[shots_sl])
return size

def mask(self, pub_idx: int) -> npt.NDArray[np.bool_]:
shape, args_sl, shots_sl = self._data_slices[pub_idx]
mask = np.zeros(shape, dtype=np.bool_)
mask.reshape(np.prod(shape[:-1]), shape[-1])[(args_sl, shots_sl)] = True
return mask

def filter_by_pub(self, pub_idx: int | Iterable[int]) -> "DoubleSliceSpan":
pub_idx = {pub_idx} if isinstance(pub_idx, int) else set(pub_idx)
slices = {idx: val for idx, val in self._data_slices.items() if idx in pub_idx}
return DoubleSliceSpan(self.start, self.stop, slices)
2 changes: 1 addition & 1 deletion qiskit_ibm_runtime/options/zne_options.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ class ZneOptions:
Technical note: for single observables with multiple basis terms it might turn out that
multiple extrapolation methods are used in *the same* expectation value, for example, ``XX``
gets linearly extrapolated but ``XY`` gets exponentially extrapolated in the observable
``{"XX": 0.5, "XY": 0.5}``. Let's call this a *hetergeneous fit*. The data from (2) is
``{"XX": 0.5, "XY": 0.5}``. Let's call this a *heterogeneous fit*. The data from (2) is
evaluated from heterogeneous fits by selecting the best fit for every individual distinct
term, whereas data from (1) is evaluated from forced homogenous fits, one for each provided
extrapolator. If your work requires a nuanced distinction in this regard, we presently
Expand Down
1 change: 1 addition & 0 deletions release-notes/unreleased/1982.feat.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
Added :class:`.DoubleSliceSpan`, an :class:`ExecutionSpan` for batching with two slices.
98 changes: 97 additions & 1 deletion test/unit/test_execution_span.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@

import numpy as np
import numpy.testing as npt
from qiskit_ibm_runtime.execution_span import SliceSpan, ExecutionSpans
from qiskit_ibm_runtime.execution_span import SliceSpan, DoubleSliceSpan, ExecutionSpans

from ..ibm_test_case import IBMTestCase

Expand Down Expand Up @@ -126,6 +126,102 @@ def test_filter_by_pub(self):
self.assertEqual(self.span2.filter_by_pub(1), SliceSpan(self.start2, self.stop2, {}))


@ddt.ddt
class TestDoubleSliceSpan(IBMTestCase):
"""Class for testing DoubleSliceSpan."""

def setUp(self) -> None:
super().setUp()
self.start1 = datetime(2024, 10, 11, 4, 31, 30)
self.stop1 = datetime(2024, 10, 11, 4, 31, 34)
self.slices1 = {
2: ((1, 100), slice(1), slice(4, 9)),
0: ((3, 5, 10), slice(10, 13), slice(2, 5)),
}
self.span1 = DoubleSliceSpan(self.start1, self.stop1, self.slices1)

self.start2 = datetime(2024, 10, 16, 11, 9, 20)
self.stop2 = datetime(2024, 10, 16, 11, 9, 30)
self.slices2 = {
0: ((5, 100), slice(3, 5), slice(20, 40)),
1: ((1, 5, 3), slice(2, 5), slice(3)),
}
self.span2 = DoubleSliceSpan(self.start2, self.stop2, self.slices2)

def test_limits(self):
"""Test the start and stop properties"""
self.assertEqual(self.span1.start, self.start1)
self.assertEqual(self.span1.stop, self.stop1)
self.assertEqual(self.span2.start, self.start2)
self.assertEqual(self.span2.stop, self.stop2)

def test_equality(self):
"""Test the equality method."""
self.assertEqual(self.span1, self.span1)
self.assertEqual(self.span1, DoubleSliceSpan(self.start1, self.stop1, self.slices1))
self.assertNotEqual(self.span1, "aoeu")
self.assertNotEqual(self.span1, self.span2)

def test_duration(self):
"""Test the duration property"""
self.assertEqual(self.span1.duration, 4)
self.assertEqual(self.span2.duration, 10)

def test_repr(self):
"""Test the repr method"""
expect = "start='2024-10-11 04:31:30', stop='2024-10-11 04:31:34', size=14"
self.assertEqual(repr(self.span1), f"DoubleSliceSpan(<{expect}>)")

def test_size(self):
"""Test the size property"""
self.assertEqual(self.span1.size, 1 * 5 + 3 * 3)
self.assertEqual(self.span2.size, 2 * 20 + 3 * 3)

def test_pub_idxs(self):
"""Test the pub_idxs property"""
self.assertEqual(self.span1.pub_idxs, [0, 2])
self.assertEqual(self.span2.pub_idxs, [0, 1])

def test_mask(self):
"""Test the mask() method"""
mask1 = np.zeros((1, 100), dtype=bool)
mask1[0][4:9] = True
npt.assert_array_equal(self.span1.mask(2), mask1)

mask2 = [[[0, 0, 0], [0, 0, 0], [1, 1, 1], [1, 1, 1], [1, 1, 1]]]
npt.assert_array_equal(self.span2.mask(1), mask2)

@ddt.data(
(0, True, True),
([0, 1], True, True),
([0, 1, 2], True, True),
([1, 2], True, True),
([1], False, True),
(2, True, False),
([0, 2], True, True),
)
@ddt.unpack
def test_contains_pub(self, idx, span1_expected_res, span2_expected_res):
"""The the contains_pub method"""
self.assertEqual(self.span1.contains_pub(idx), span1_expected_res)
self.assertEqual(self.span2.contains_pub(idx), span2_expected_res)

def test_filter_by_pub(self):
"""The the filter_by_pub method"""
self.assertEqual(self.span1.filter_by_pub([]), DoubleSliceSpan(self.start1, self.stop1, {}))
self.assertEqual(self.span2.filter_by_pub([]), DoubleSliceSpan(self.start2, self.stop2, {}))

self.assertEqual(
self.span1.filter_by_pub([1, 0]),
DoubleSliceSpan(self.start1, self.stop1, {0: self.slices1[0]}),
)

self.assertEqual(
self.span1.filter_by_pub(2),
DoubleSliceSpan(self.start1, self.stop1, {2: self.slices1[2]}),
)


@ddt.ddt
class TestExecutionSpans(IBMTestCase):
"""Class for testing ExecutionSpans."""
Expand Down

0 comments on commit 0486fb8

Please sign in to comment.