Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: specify column names in constructor of table transformers #795

Merged
merged 5 commits into from
May 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 1 addition & 3 deletions docs/tutorials/classification.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@
"source": [
"from safeds.data.tabular.transformation import OneHotEncoder\n",
"\n",
"encoder = OneHotEncoder().fit(train_table, [\"sex\"])"
"encoder = OneHotEncoder(column_names=\"sex\").fit(train_table)"
],
"metadata": {
"collapsed": false
Expand Down Expand Up @@ -155,7 +155,6 @@
{
"cell_type": "code",
"source": [
"encoder = OneHotEncoder().fit(test_table, [\"sex\"])\n",
"transformed_test_table = encoder.transform(test_table)\n",
"\n",
"prediction = fitted_model.predict(\n",
Expand All @@ -182,7 +181,6 @@
{
"cell_type": "code",
"source": [
"encoder = OneHotEncoder().fit(test_table, [\"sex\"])\n",
"testing_table = encoder.transform(testing_table)\n",
"\n",
"test_tabular_dataset = testing_table.to_tabular_dataset(\"survived\", extra_names=extra_names)\n",
Expand Down
10 changes: 5 additions & 5 deletions docs/tutorials/data_processing.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -183,7 +183,7 @@
"source": [
"from safeds.data.tabular.transformation import SimpleImputer\n",
"\n",
"imputer = SimpleImputer(SimpleImputer.Strategy.constant(0)).fit(titanic, [\"age\", \"fare\", \"cabin\", \"port_embarked\"])\n",
"imputer = SimpleImputer(SimpleImputer.Strategy.constant(0), column_names=[\"age\", \"fare\", \"cabin\", \"port_embarked\"]).fit(titanic)\n",
"imputer.transform(titanic_slice)"
],
"metadata": {
Expand All @@ -206,7 +206,7 @@
"source": [
"from safeds.data.tabular.transformation import LabelEncoder\n",
"\n",
"encoder = LabelEncoder().fit(titanic, [\"sex\", \"port_embarked\"])\n",
"encoder = LabelEncoder(column_names=[\"sex\", \"port_embarked\"]).fit(titanic)\n",
"encoder.transform(titanic_slice)"
],
"metadata": {
Expand All @@ -229,7 +229,7 @@
"source": [
"from safeds.data.tabular.transformation import OneHotEncoder\n",
"\n",
"encoder = OneHotEncoder().fit(titanic, [\"sex\", \"port_embarked\"])\n",
"encoder = OneHotEncoder(column_names=[\"sex\", \"port_embarked\"]).fit(titanic)\n",
"encoder.transform(titanic_slice)"
],
"metadata": {
Expand All @@ -252,7 +252,7 @@
"source": [
"from safeds.data.tabular.transformation import RangeScaler\n",
"\n",
"scaler = RangeScaler(0.0, 1.0).fit(titanic, [\"age\"])\n",
"scaler = RangeScaler(0.0, 1.0, column_names=\"age\").fit(titanic)\n",
"scaler.transform(titanic_slice)"
],
"metadata": {
Expand All @@ -275,7 +275,7 @@
"source": [
"from safeds.data.tabular.transformation import StandardScaler\n",
"\n",
"scaler = StandardScaler().fit(titanic, [\"age\", \"travel_class\"])\n",
"scaler = StandardScaler(column_names=[\"age\", \"travel_class\"]).fit(titanic)\n",
"scaler.transform(titanic_slice)"
],
"metadata": {
Expand Down
2 changes: 1 addition & 1 deletion src/safeds/data/labeled/containers/_image_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -374,7 +374,7 @@ def __init__(self, column: Column) -> None:
)
# TODO: should not one-hot-encode the target. label encoding without order is sufficient. should also not
# be done automatically?
self._one_hot_encoder = OneHotEncoder().fit(column_as_table, [self._column_name])
self._one_hot_encoder = OneHotEncoder(column_names=self._column_name).fit(column_as_table)
self._tensor = torch.Tensor(
self._one_hot_encoder.transform(column_as_table)._data_frame.to_torch(dtype=pl.Float32),
).to(_get_device())
Expand Down
4 changes: 2 additions & 2 deletions src/safeds/data/tabular/containers/_table.py
Original file line number Diff line number Diff line change
Expand Up @@ -1688,7 +1688,7 @@ def inverse_transform_table(self, fitted_transformer: InvertibleTableTransformer
>>> from safeds.data.tabular.containers import Table
>>> from safeds.data.tabular.transformation import RangeScaler
>>> table = Table({"a": [1, 2, 3]})
>>> transformer, transformed_table = RangeScaler(min_=0, max_=1).fit_and_transform(table, ["a"])
>>> transformer, transformed_table = RangeScaler(min_=0, max_=1, column_names="a").fit_and_transform(table)
>>> transformed_table.inverse_transform_table(transformer)
+---------+
| a |
Expand Down Expand Up @@ -1726,7 +1726,7 @@ def transform_table(self, fitted_transformer: TableTransformer) -> Table:
>>> from safeds.data.tabular.containers import Table
>>> from safeds.data.tabular.transformation import RangeScaler
>>> table = Table({"a": [1, 2, 3]})
>>> transformer = RangeScaler(min_=0, max_=1).fit(table, ["a"])
>>> transformer = RangeScaler(min_=0, max_=1, column_names="a").fit(table)
>>> table.transform_table(transformer)
+---------+
| a |
Expand Down
33 changes: 20 additions & 13 deletions src/safeds/data/tabular/transformation/_discretizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@

from safeds._utils import _structural_hash
from safeds._validation import _check_bounds, _check_columns_exist, _ClosedBound
from safeds._validation._check_columns_are_numeric import _check_columns_are_numeric
from safeds.data.tabular.containers import Table
from safeds.exceptions import (
NonNumericColumnError,
Expand All @@ -24,6 +25,8 @@ class Discretizer(TableTransformer):
----------
bin_count:
The number of bins to be created.
column_names:
The list of columns used to fit the transformer. If `None`, all numeric columns are used.

Raises
------
Expand All @@ -35,8 +38,13 @@ class Discretizer(TableTransformer):
# Dunder methods
# ------------------------------------------------------------------------------------------------------------------

def __init__(self, bin_count: int = 5) -> None:
TableTransformer.__init__(self)
def __init__(
self,
bin_count: int = 5,
*,
column_names: str | list[str] | None = None,
) -> None:
TableTransformer.__init__(self, column_names)

_check_bounds("bin_count", bin_count, lower_bound=_ClosedBound(2))

Expand All @@ -53,6 +61,10 @@ def __hash__(self) -> int:
# Properties
# ------------------------------------------------------------------------------------------------------------------

@property
def is_fitted(self) -> bool:
return self._wrapped_transformer is not None

@property
def bin_count(self) -> int:
return self._bin_count
Expand All @@ -61,7 +73,7 @@ def bin_count(self) -> int:
# Learning and transformation
# ------------------------------------------------------------------------------------------------------------------

def fit(self, table: Table, column_names: list[str] | None) -> Discretizer:
def fit(self, table: Table) -> Discretizer:
"""
Learn a transformation for a set of columns in a table.

Expand All @@ -71,8 +83,6 @@ def fit(self, table: Table, column_names: list[str] | None) -> Discretizer:
----------
table:
The table used to fit the transformer.
column_names:
The list of columns from the table used to fit the transformer. If `None`, all columns are used.

Returns
-------
Expand All @@ -93,24 +103,21 @@ def fit(self, table: Table, column_names: list[str] | None) -> Discretizer:
if table.row_count == 0:
raise ValueError("The Discretizer cannot be fitted because the table contains 0 rows")

if column_names is None:
column_names = table.column_names
if self._column_names is None:
column_names = [name for name in table.column_names if table.get_column_type(name).is_numeric]
else:
column_names = self._column_names
_check_columns_exist(table, column_names)

for column in column_names:
if not table.get_column(column).type.is_numeric:
raise NonNumericColumnError(f"{column} is of type {table.get_column(column).type}.")
_check_columns_are_numeric(table, column_names, operation="fit a Discretizer")

wrapped_transformer = sk_KBinsDiscretizer(n_bins=self._bin_count, encode="ordinal")
wrapped_transformer.set_output(transform="polars")
wrapped_transformer.fit(
table.remove_columns_except(column_names)._data_frame,
)

result = Discretizer(self._bin_count)
result = Discretizer(self._bin_count, column_names=column_names)
result._wrapped_transformer = wrapped_transformer
result._column_names = column_names

return result

Expand Down
25 changes: 17 additions & 8 deletions src/safeds/data/tabular/transformation/_label_encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@ class LabelEncoder(InvertibleTableTransformer):

Parameters
----------
column_names:
The list of columns used to fit the transformer. If `None`, all non-numeric columns are used.
partial_order:
The partial order of the labels. The labels are encoded in the order of the given list. Additional values are
assigned labels in the order they are encountered during fitting.
Expand All @@ -27,8 +29,13 @@ class LabelEncoder(InvertibleTableTransformer):
# Dunder methods
# ------------------------------------------------------------------------------------------------------------------

def __init__(self, *, partial_order: list[Any] | None = None) -> None:
super().__init__()
def __init__(
self,
*,
column_names: str | list[str] | None = None,
partial_order: list[Any] | None = None,
) -> None:
super().__init__(column_names)

if partial_order is None:
partial_order = []
Expand All @@ -51,6 +58,10 @@ def __hash__(self) -> int:
# Properties
# ------------------------------------------------------------------------------------------------------------------

@property
def is_fitted(self) -> bool:
return self._mapping is not None and self._inverse_mapping is not None

@property
def partial_order(self) -> list[Any]:
"""The partial order of the labels."""
Expand All @@ -60,7 +71,7 @@ def partial_order(self) -> list[Any]:
# Learning and transformation
# ------------------------------------------------------------------------------------------------------------------

def fit(self, table: Table, column_names: list[str] | None) -> LabelEncoder:
def fit(self, table: Table) -> LabelEncoder:
"""
Learn a transformation for a set of columns in a table.

Expand All @@ -70,8 +81,6 @@ def fit(self, table: Table, column_names: list[str] | None) -> LabelEncoder:
----------
table:
The table used to fit the transformer.
column_names:
The list of columns from the table used to fit the transformer. If `None`, all non-numeric columns are used.

Returns
-------
Expand All @@ -85,9 +94,10 @@ def fit(self, table: Table, column_names: list[str] | None) -> LabelEncoder:
ValueError
If the table contains 0 rows.
"""
if column_names is None:
if self._column_names is None:
column_names = [name for name in table.column_names if not table.get_column_type(name).is_numeric]
else:
column_names = self._column_names
_check_columns_exist(table, column_names)
_warn_if_columns_are_numeric(table, column_names)

Expand All @@ -111,8 +121,7 @@ def fit(self, table: Table, column_names: list[str] | None) -> LabelEncoder:
reverse_mapping[name][label] = value

# Create a copy with the learned transformation
result = LabelEncoder(partial_order=self._partial_order)
result._column_names = column_names
result = LabelEncoder(column_names=column_names, partial_order=self._partial_order)
result._mapping = mapping
result._inverse_mapping = reverse_mapping

Expand Down
21 changes: 13 additions & 8 deletions src/safeds/data/tabular/transformation/_one_hot_encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,8 @@ class OneHotEncoder(InvertibleTableTransformer):

Parameters
----------
column_names:
The list of columns used to fit the transformer. If `None`, all non-numeric columns are used.
separator:
The separator used to separate the original column name from the value in the new column names.

Expand All @@ -52,7 +54,7 @@ class OneHotEncoder(InvertibleTableTransformer):
>>> from safeds.data.tabular.transformation import OneHotEncoder
>>> table = Table({"col1": ["a", "b", "c", "a"]})
>>> transformer = OneHotEncoder()
>>> transformer.fit_and_transform(table, ["col1"])[1]
>>> transformer.fit_and_transform(table)[1]
+---------+---------+---------+
| col1__a | col1__b | col1__c |
| --- | --- | --- |
Expand All @@ -72,9 +74,10 @@ class OneHotEncoder(InvertibleTableTransformer):
def __init__(
self,
*,
column_names: str | list[str] | None = None,
separator: str = "__",
) -> None:
super().__init__()
super().__init__(column_names)

# Parameters
self._separator = separator
Expand Down Expand Up @@ -103,6 +106,10 @@ def __hash__(self) -> int:
# Properties
# ------------------------------------------------------------------------------------------------------------------

@property
def is_fitted(self) -> bool:
return self._mapping is not None

@property
def separator(self) -> str:
"""The separator used to separate the original column name from the value in the new column names."""
Expand All @@ -112,7 +119,7 @@ def separator(self) -> str:
# Learning and transformation
# ------------------------------------------------------------------------------------------------------------------

def fit(self, table: Table, column_names: list[str] | None) -> OneHotEncoder:
def fit(self, table: Table) -> OneHotEncoder:
"""
Learn a transformation for a set of columns in a table.

Expand All @@ -122,8 +129,6 @@ def fit(self, table: Table, column_names: list[str] | None) -> OneHotEncoder:
----------
table:
The table used to fit the transformer.
column_names:
The list of columns from the table used to fit the transformer. If `None`, all columns are used.

Returns
-------
Expand All @@ -137,9 +142,10 @@ def fit(self, table: Table, column_names: list[str] | None) -> OneHotEncoder:
ValueError
If the table contains 0 rows.
"""
if column_names is None:
if self._column_names is None:
column_names = [name for name in table.column_names if not table.get_column_type(name).is_numeric]
else:
column_names = self._column_names
_check_columns_exist(table, column_names)
_warn_if_columns_are_numeric(table, column_names)

Expand Down Expand Up @@ -169,8 +175,7 @@ def fit(self, table: Table, column_names: list[str] | None) -> OneHotEncoder:
mapping[name].append((new_name, value))

# Create a copy with the learned transformation
result = OneHotEncoder()
result._column_names = column_names
result = OneHotEncoder(column_names=column_names, separator=self._separator)
result._new_column_names = new_column_names
result._mapping = mapping

Expand Down
Loading