Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Getters for hyperparameters of Regression and Classification models #306

Merged
merged 17 commits into from
May 25, 2023
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
Show all changes
17 commits
Select commit Hold shift + click to select a range
2cba8e5
added getter for the AdaBoost class + refactored tests
PhilipGutberlet May 12, 2023
16be615
fixed getter for the AdaBoost class + refactored tests
PhilipGutberlet May 12, 2023
399c937
added getter for the k_nearest_neighbors class + refactored tests
PhilipGutberlet May 12, 2023
ec2c087
added getter for the RandomForest class + refactored tests
PhilipGutberlet May 12, 2023
170b139
added getter for AdaBoost in Regressor + refactored tests
PhilipGutberlet May 12, 2023
f73c89b
added getter for GradientBoost in Regressor + refactored tests
PhilipGutberlet May 12, 2023
b852052
added getter for k_nearest_neighbors in Regressor + refactored tests
PhilipGutberlet May 12, 2023
fa98d41
added getter for LassoRegression in Regressor + refactored tests
PhilipGutberlet May 12, 2023
5747fdc
added getter for RandomForest in Regressor + refactored tests
PhilipGutberlet May 12, 2023
36a970b
added getter for RidgeRegression in Regressor + refactored tests
PhilipGutberlet May 12, 2023
9393651
fixed returns of some properties
PhilipGutberlet May 12, 2023
f914ba4
fixed returns types of some properties
PhilipGutberlet May 12, 2023
79a46c6
style: apply automated linter fixes
megalinter-bot May 12, 2023
3447d77
fixed test of AdaBoost in Regressor
PhilipGutberlet May 12, 2023
67a257d
Merge remote-tracking branch 'origin/260-getters-for-hyperparameters-…
PhilipGutberlet May 15, 2023
05b1d6f
added propert yfor c in support_vector_machine
PhilipGutberlet May 19, 2023
e28dcf9
Merge branch 'main' into 260-getters-for-hyperparameters-of-models
PhilipGutberlet May 25, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 16 additions & 4 deletions src/safeds/ml/classical/classification/_ada_boost.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,18 @@ def __init__(
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def learner(self) -> Classifier | None:
return self._learner

@property
def maximum_number_of_learners(self) -> int:
return self._maximum_number_of_learners

@property
def learning_rate(self) -> float:
return self._learning_rate

def fit(self, training_set: TaggedTable) -> AdaBoost:
"""
Create a copy of this classifier and fit it with the given training data.
Expand All @@ -83,8 +95,8 @@ def fit(self, training_set: TaggedTable) -> AdaBoost:
fit(wrapped_classifier, training_set)

result = AdaBoost(
learner=self._learner,
maximum_number_of_learners=self._maximum_number_of_learners,
learner=self.learner,
maximum_number_of_learners=self.maximum_number_of_learners,
learning_rate=self._learning_rate,
)
result._wrapped_classifier = wrapped_classifier
Expand Down Expand Up @@ -140,9 +152,9 @@ def _get_sklearn_classifier(self) -> ClassifierMixin:
wrapped_classifier: ClassifierMixin
The sklearn Classifier.
"""
learner = self._learner._get_sklearn_classifier() if self._learner is not None else None
learner = self.learner._get_sklearn_classifier() if self.learner is not None else None
return sk_AdaBoostClassifier(
estimator=learner,
n_estimators=self._maximum_number_of_learners,
n_estimators=self.maximum_number_of_learners,
learning_rate=self._learning_rate,
)
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,14 @@ def __init__(self, *, number_of_trees: int = 100, learning_rate: float = 0.1) ->
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def number_of_trees(self) -> int:
return self._number_of_trees

@property
def learning_rate(self) -> float:
return self._learning_rate

def fit(self, training_set: TaggedTable) -> GradientBoosting:
"""
Create a copy of this classifier and fit it with the given training data.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,10 @@ def __init__(self, number_of_neighbors: int) -> None:
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def number_of_neighbors(self) -> int:
return self._number_of_neighbors

def fit(self, training_set: TaggedTable) -> KNearestNeighbors:
"""
Create a copy of this classifier and fit it with the given training data.
Expand Down
4 changes: 4 additions & 0 deletions src/safeds/ml/classical/classification/_random_forest.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,10 @@ def __init__(self, *, number_of_trees: int = 100) -> None:
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def number_of_trees(self) -> int:
return self._number_of_trees

def fit(self, training_set: TaggedTable) -> RandomForest:
"""
Create a copy of this classifier and fit it with the given training data.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,15 @@ def __init__(self, *, c: float = 1.0) -> None:
self._feature_names: list[str] | None = None
self._target_name: str | None = None

# Hyperparameters
if c <= 0:
raise ValueError("The parameter 'c' has to be strictly positive.")
self._c = c

@property
def c(self) -> float:
return self._c

def fit(self, training_set: TaggedTable) -> SupportVectorMachine:
"""
Create a copy of this classifier and fit it with the given training data.
Expand Down
12 changes: 12 additions & 0 deletions src/safeds/ml/classical/regression/_ada_boost.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,18 @@ def __init__(
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def learner(self) -> Regressor | None:
return self._learner

@property
def maximum_number_of_learners(self) -> int:
return self._maximum_number_of_learners

@property
def learning_rate(self) -> float:
return self._learning_rate

def fit(self, training_set: TaggedTable) -> AdaBoost:
"""
Create a copy of this regressor and fit it with the given training data.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,14 @@ def __init__(self, *, alpha: float = 1.0, lasso_ratio: float = 0.5) -> None:
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def alpha(self) -> float:
return self._alpha

@property
def lasso_ratio(self) -> float:
return self._lasso_ratio

def fit(self, training_set: TaggedTable) -> ElasticNetRegression:
"""
Create a copy of this regressor and fit it with the given training data.
Expand Down
8 changes: 8 additions & 0 deletions src/safeds/ml/classical/regression/_gradient_boosting.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,14 @@ def __init__(self, *, number_of_trees: int = 100, learning_rate: float = 0.1) ->
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def number_of_trees(self) -> int:
return self._number_of_trees

@property
def learning_rate(self) -> float:
return self._learning_rate

def fit(self, training_set: TaggedTable) -> GradientBoosting:
"""
Create a copy of this regressor and fit it with the given training data.
Expand Down
4 changes: 4 additions & 0 deletions src/safeds/ml/classical/regression/_k_nearest_neighbors.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,10 @@ def __init__(self, number_of_neighbors: int) -> None:
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def number_of_neighbors(self) -> int:
return self._number_of_neighbors

def fit(self, training_set: TaggedTable) -> KNearestNeighbors:
"""
Create a copy of this regressor and fit it with the given training data.
Expand Down
4 changes: 4 additions & 0 deletions src/safeds/ml/classical/regression/_lasso_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,10 @@ def __init__(self, *, alpha: float = 1.0) -> None:
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def alpha(self) -> float:
return self._alpha

def fit(self, training_set: TaggedTable) -> LassoRegression:
"""
Create a copy of this regressor and fit it with the given training data.
Expand Down
4 changes: 4 additions & 0 deletions src/safeds/ml/classical/regression/_random_forest.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,10 @@ def __init__(self, *, number_of_trees: int = 100) -> None:
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def number_of_trees(self) -> int:
return self._number_of_trees

def fit(self, training_set: TaggedTable) -> RandomForest:
"""
Create a copy of this regressor and fit it with the given training data.
Expand Down
4 changes: 4 additions & 0 deletions src/safeds/ml/classical/regression/_ridge_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,10 @@ def __init__(self, *, alpha: float = 1.0) -> None:
self._feature_names: list[str] | None = None
self._target_name: str | None = None

@property
def alpha(self) -> float:
return self._alpha

def fit(self, training_set: TaggedTable) -> RidgeRegression:
"""
Create a copy of this regressor and fit it with the given training data.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,15 @@ def __init__(self, *, c: float = 1.0) -> None:
self._feature_names: list[str] | None = None
self._target_name: str | None = None

# Hyperparameters
if c <= 0:
raise ValueError("The parameter 'c' has to be strictly positive.")
self._c = c

@property
def c(self) -> float:
return self._c

def fit(self, training_set: TaggedTable) -> SupportVectorMachine:
"""
Create a copy of this regressor and fit it with the given training data.
Expand Down
6 changes: 3 additions & 3 deletions tests/safeds/ml/classical/classification/test_ada_boost.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ class TestLearner:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
learner = AdaBoost()
fitted_model = AdaBoost(learner=learner).fit(training_set)
assert fitted_model._learner == learner
assert fitted_model.learner == learner

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
learner = AdaBoost()
Expand All @@ -25,7 +25,7 @@ def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
class TestMaximumNumberOfLearners:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = AdaBoost(maximum_number_of_learners=2).fit(training_set)
assert fitted_model._maximum_number_of_learners == 2
assert fitted_model.maximum_number_of_learners == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = AdaBoost(maximum_number_of_learners=2).fit(training_set)
Expand All @@ -40,7 +40,7 @@ def test_should_raise_if_less_than_or_equal_to_0(self) -> None:
class TestLearningRate:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = AdaBoost(learning_rate=2).fit(training_set)
assert fitted_model._learning_rate == 2
assert fitted_model.learning_rate == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = AdaBoost(learning_rate=2).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestNumberOfTrees:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = GradientBoosting(number_of_trees=2).fit(training_set)
assert fitted_model._number_of_trees == 2
assert fitted_model.number_of_trees == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = GradientBoosting(number_of_trees=2).fit(training_set)
Expand All @@ -27,7 +27,7 @@ def test_should_raise_if_less_than_1(self) -> None:
class TestLearningRate:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = GradientBoosting(learning_rate=2).fit(training_set)
assert fitted_model._learning_rate == 2
assert fitted_model.learning_rate == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = GradientBoosting(learning_rate=2).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestNumberOfNeighbors:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = KNearestNeighbors(number_of_neighbors=2).fit(training_set)
assert fitted_model._number_of_neighbors == 2
assert fitted_model.number_of_neighbors == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = KNearestNeighbors(number_of_neighbors=2).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestNumberOfTrees:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = RandomForest(number_of_trees=2).fit(training_set)
assert fitted_model._number_of_trees == 2
assert fitted_model.number_of_trees == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = RandomForest(number_of_trees=2).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestC:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = SupportVectorMachine(c=2).fit(training_set=training_set)
assert fitted_model._c == 2
assert fitted_model.c == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = SupportVectorMachine(c=2).fit(training_set)
Expand Down
6 changes: 3 additions & 3 deletions tests/safeds/ml/classical/regression/test_ada_boost.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ class TestLearner:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
learner = AdaBoost()
fitted_model = AdaBoost(learner=learner).fit(training_set)
assert fitted_model._learner == learner
assert fitted_model.learner == learner

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
learner = AdaBoost()
Expand All @@ -25,7 +25,7 @@ def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
class TestMaximumNumberOfLearners:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = AdaBoost(maximum_number_of_learners=2).fit(training_set)
assert fitted_model._maximum_number_of_learners == 2
assert fitted_model.maximum_number_of_learners == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = AdaBoost(maximum_number_of_learners=2).fit(training_set)
Expand All @@ -40,7 +40,7 @@ def test_should_raise_if_less_than_or_equal_to_0(self) -> None:
class TestLearningRate:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = AdaBoost(learning_rate=2).fit(training_set)
assert fitted_model._learning_rate == 2
assert fitted_model.learning_rate == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = AdaBoost(learning_rate=2).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestAlpha:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = ElasticNetRegression(alpha=1).fit(training_set)
assert fitted_model._alpha == 1
assert fitted_model.alpha == 1

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = ElasticNetRegression(alpha=1).fit(training_set)
Expand All @@ -37,7 +37,7 @@ def test_should_warn_if_equal_to_0(self) -> None:
class TestLassoRatio:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = ElasticNetRegression(lasso_ratio=0.3).fit(training_set)
assert fitted_model._lasso_ratio == 0.3
assert fitted_model.lasso_ratio == 0.3

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = ElasticNetRegression(lasso_ratio=0.3).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestNumberOfTrees:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = GradientBoosting(number_of_trees=2).fit(training_set)
assert fitted_model._number_of_trees == 2
assert fitted_model.number_of_trees == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = GradientBoosting(number_of_trees=2).fit(training_set)
Expand All @@ -27,7 +27,7 @@ def test_should_raise_if_less_than_1(self) -> None:
class TestLearningRate:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = GradientBoosting(learning_rate=2).fit(training_set)
assert fitted_model._learning_rate == 2
assert fitted_model.learning_rate == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = GradientBoosting(learning_rate=2).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestNumberOfNeighbors:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = KNearestNeighbors(number_of_neighbors=2).fit(training_set)
assert fitted_model._number_of_neighbors == 2
assert fitted_model.number_of_neighbors == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = KNearestNeighbors(number_of_neighbors=2).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestAlpha:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = LassoRegression(alpha=1).fit(training_set)
assert fitted_model._alpha == 1
assert fitted_model.alpha == 1

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = LassoRegression(alpha=1).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestNumberOfTrees:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = RandomForest(number_of_trees=2).fit(training_set)
assert fitted_model._number_of_trees == 2
assert fitted_model.number_of_trees == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = RandomForest(number_of_trees=2).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestAlpha:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = RidgeRegression(alpha=1).fit(training_set)
assert fitted_model._alpha == 1
assert fitted_model.alpha == 1

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = RidgeRegression(alpha=1).fit(training_set)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ def training_set() -> TaggedTable:
class TestC:
def test_should_be_passed_to_fitted_model(self, training_set: TaggedTable) -> None:
fitted_model = SupportVectorMachine(c=2).fit(training_set=training_set)
assert fitted_model._c == 2
assert fitted_model.c == 2

def test_should_be_passed_to_sklearn(self, training_set: TaggedTable) -> None:
fitted_model = SupportVectorMachine(c=2).fit(training_set)
Expand Down