Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add parameter lasso_ratio to ElasticNetRegression #237

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 19 additions & 3 deletions src/safeds/ml/classical/regression/_elastic_net_regression.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from __future__ import annotations

import warnings
from typing import TYPE_CHECKING

from sklearn.linear_model import ElasticNet as sk_ElasticNet
Expand All @@ -15,7 +16,22 @@
class ElasticNetRegression(Regressor):
"""Elastic net regression."""

def __init__(self) -> None:
def __init__(self, lasso_ratio: float = 0.5) -> None:
if lasso_ratio < 0 or lasso_ratio > 1:
raise ValueError("lasso_ratio must be between 0 and 1.")
elif lasso_ratio == 0:
warnings.warn(
"ElasticNetRegression with lasso_ratio = 0 is essentially RidgeRegression."
" Use RidgeRegression instead for better numerical stability.",
stacklevel=1,
)
elif lasso_ratio == 1:
warnings.warn(
"ElasticNetRegression with lasso_ratio = 0 is essentially LassoRegression."
" Use LassoRegression instead for better numerical stability.",
stacklevel=1,
)
self.lasso_ratio = lasso_ratio
self._wrapped_regressor: sk_ElasticNet | None = None
self._feature_names: list[str] | None = None
self._target_name: str | None = None
Expand All @@ -41,10 +57,10 @@ def fit(self, training_set: TaggedTable) -> ElasticNetRegression:
LearningError
If the training data contains invalid values or if the training failed.
"""
wrapped_regressor = sk_ElasticNet()
wrapped_regressor = sk_ElasticNet(l1_ratio=self.lasso_ratio)
fit(wrapped_regressor, training_set)

result = ElasticNetRegression()
result = ElasticNetRegression(self.lasso_ratio)
result._wrapped_regressor = wrapped_regressor
result._feature_names = training_set.features.column_names
result._target_name = training_set.target.name
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
import pytest
from safeds.data.tabular.containers import Table
from safeds.ml.classical.regression._elastic_net_regression import ElasticNetRegression


def test_lasso_ratio_valid() -> None:
training_set = Table.from_dict({"col1": [1, 2, 3, 4], "col2": [1, 2, 3, 4]})
tagged_training_set = training_set.tag_columns(target_name="col1", feature_names=["col2"])
lasso_ratio = 0.3

elastic_net_regression = ElasticNetRegression(lasso_ratio).fit(tagged_training_set)
assert elastic_net_regression._wrapped_regressor is not None
assert elastic_net_regression._wrapped_regressor.l1_ratio == lasso_ratio


def test_lasso_ratio_invalid() -> None:
with pytest.raises(ValueError, match="lasso_ratio must be between 0 and 1."):
ElasticNetRegression(-1)


def test_lasso_ratio_zero() -> None:
with pytest.warns(
UserWarning,
match="ElasticNetRegression with lasso_ratio = 0 is essentially RidgeRegression."
" Use RidgeRegression instead for better numerical stability.",
):
ElasticNetRegression(0)


def test_lasso_ratio_one() -> None:
with pytest.warns(
UserWarning,
match="ElasticNetRegression with lasso_ratio = 0 is essentially LassoRegression."
" Use LassoRegression instead for better numerical stability.",
):
ElasticNetRegression(1)


# (Default parameter is tested in `test_regressor.py`.)