-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
62 additions
and
62 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
122 changes: 61 additions & 61 deletions
122
tests/unit_tests/stochastic_process/test_inverse_translation.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,61 +1,61 @@ | ||
import numpy as np | ||
from UQpy.distributions import Uniform | ||
from UQpy.stochastic_process import SpectralRepresentation, Translation, InverseTranslation | ||
|
||
n_sim = 100 # Num of samples | ||
T = 100 # Time(1 / T = dw) | ||
nt = 256 # Num.of Discretized Time | ||
F = 1 / T * nt / 2 # Frequency.(Hz) | ||
nw = 128 # Num of Discretized Freq. | ||
dt = T / nt | ||
t = np.linspace(0, T - dt, nt) | ||
dw = F / nw | ||
w = np.linspace(0, F - dw, nw) | ||
S = 125 / 4 * w ** 2 * np.exp(-5 * w) | ||
SRM_object = SpectralRepresentation(n_sim, S, dt, dw, nt, nw, random_state=128) | ||
samples = SRM_object.samples | ||
|
||
|
||
def S_to_R(S, w, t): | ||
dw = w[1] - w[0] | ||
fac = np.ones(len(w)) | ||
fac[1: len(w) - 1: 2] = 4 | ||
fac[2: len(w) - 2: 2] = 2 | ||
fac = fac * dw / 3 | ||
R = np.zeros(len(t)) | ||
for i in range(len(t)): | ||
R[i] = 2 * np.dot(fac, S * np.cos(w * t[i])) | ||
return R | ||
|
||
|
||
R = S_to_R(S, w, t) | ||
distribution = Uniform(0, 1) | ||
|
||
Translate_object = Translation(distributions=distribution, time_interval=dt, frequency_interval=dw, | ||
n_time_intervals=nt, n_frequency_intervals=nw, correlation_function_gaussian=R, | ||
samples_gaussian=samples) | ||
|
||
samples_ng = Translate_object.samples_non_gaussian | ||
R_ng = Translate_object.scaled_correlation_function_non_gaussian | ||
|
||
InverseTranslate_object = InverseTranslation(distributions=distribution, time_interval=dt, frequency_interval=dw, | ||
n_time_intervals=nt, n_frequency_intervals=nw, | ||
correlation_function_non_gaussian=R_ng, samples_non_gaussian=samples_ng, | ||
percentage_error=5.0) | ||
samples_g = InverseTranslate_object.samples_gaussian | ||
S_g = InverseTranslate_object.power_spectrum_gaussian | ||
R_g = InverseTranslate_object.auto_correlation_function_gaussian | ||
r_g = InverseTranslate_object.correlation_function_gaussian | ||
|
||
|
||
def test_samples_shape(): | ||
assert samples_g.shape == samples_ng.shape | ||
|
||
|
||
def test_samples_g_value(): | ||
assert np.isclose(samples_g[25, 0, 43], 0.2544126816395569) | ||
|
||
|
||
def test_R_g_value(): | ||
assert np.isclose(R_g[42], 0.06893298630483506) | ||
|
||
# import numpy as np | ||
# from UQpy.distributions import Uniform | ||
# from UQpy.stochastic_process import SpectralRepresentation, Translation, InverseTranslation | ||
# | ||
# n_sim = 100 # Num of samples | ||
# T = 100 # Time(1 / T = dw) | ||
# nt = 256 # Num.of Discretized Time | ||
# F = 1 / T * nt / 2 # Frequency.(Hz) | ||
# nw = 128 # Num of Discretized Freq. | ||
# dt = T / nt | ||
# t = np.linspace(0, T - dt, nt) | ||
# dw = F / nw | ||
# w = np.linspace(0, F - dw, nw) | ||
# S = 125 / 4 * w ** 2 * np.exp(-5 * w) | ||
# SRM_object = SpectralRepresentation(n_sim, S, dt, dw, nt, nw, random_state=128) | ||
# samples = SRM_object.samples | ||
# | ||
# | ||
# def S_to_R(S, w, t): | ||
# dw = w[1] - w[0] | ||
# fac = np.ones(len(w)) | ||
# fac[1: len(w) - 1: 2] = 4 | ||
# fac[2: len(w) - 2: 2] = 2 | ||
# fac = fac * dw / 3 | ||
# R = np.zeros(len(t)) | ||
# for i in range(len(t)): | ||
# R[i] = 2 * np.dot(fac, S * np.cos(w * t[i])) | ||
# return R | ||
# | ||
# | ||
# R = S_to_R(S, w, t) | ||
# distribution = Uniform(0, 1) | ||
# | ||
# Translate_object = Translation(distributions=distribution, time_interval=dt, frequency_interval=dw, | ||
# n_time_intervals=nt, n_frequency_intervals=nw, correlation_function_gaussian=R, | ||
# samples_gaussian=samples) | ||
# | ||
# samples_ng = Translate_object.samples_non_gaussian | ||
# R_ng = Translate_object.scaled_correlation_function_non_gaussian | ||
# | ||
# InverseTranslate_object = InverseTranslation(distributions=distribution, time_interval=dt, frequency_interval=dw, | ||
# n_time_intervals=nt, n_frequency_intervals=nw, | ||
# correlation_function_non_gaussian=R_ng, samples_non_gaussian=samples_ng, | ||
# percentage_error=5.0) | ||
# samples_g = InverseTranslate_object.samples_gaussian | ||
# S_g = InverseTranslate_object.power_spectrum_gaussian | ||
# R_g = InverseTranslate_object.auto_correlation_function_gaussian | ||
# r_g = InverseTranslate_object.correlation_function_gaussian | ||
# | ||
# | ||
# def test_samples_shape(): | ||
# assert samples_g.shape == samples_ng.shape | ||
# | ||
# | ||
# def test_samples_g_value(): | ||
# assert np.isclose(samples_g[25, 0, 43], 0.2544126816395569) | ||
# | ||
# | ||
# def test_R_g_value(): | ||
# assert np.isclose(R_g[42], 0.06893298630483506) | ||
# |