-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added a basic comparison of sensitivity indices
- Loading branch information
Prateek Bhustali
committed
Jun 6, 2022
1 parent
624c373
commit 7da93b1
Showing
7 changed files
with
371 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
Comparison of Sensitivity indices | ||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | ||
|
||
In this section we compare the sensitivity indices (Sobol, Cramér-von Mises and Chatterjee) available in the package using the 'Ishigami function' and the 'Additive model' to illustrate the differences. | ||
|
||
In both the examples, we note that the Cramér-von Mises indices and the Chatterjee indices are almost equal (as the Chatterjee indices converge to the Cramér-von Mises indices in the sample limit). |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
""" | ||
Auxiliary file | ||
============================================== | ||
""" | ||
|
||
import numpy as np | ||
|
||
|
||
def evaluate(X, params) -> np.array: | ||
r"""A linear function that is used to demonstrate sensitivity indices. | ||
.. math:: | ||
f(x) = a \cdot x_1 + b \cdot x_2 | ||
""" | ||
a, b = params | ||
|
||
Y = a * X[:, 0] + b * X[:, 1] | ||
|
||
return Y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
""" | ||
Auxiliary file | ||
============================================== | ||
""" | ||
|
||
import numpy as np | ||
|
||
|
||
def evaluate(X, params=[7, 0.1]): | ||
"""Non-monotonic Ishigami-Homma three parameter test function""" | ||
|
||
a = params[0] | ||
b = params[1] | ||
|
||
Y = ( | ||
np.sin(X[:, 0]) | ||
+ a * np.power(np.sin(X[:, 1]), 2) | ||
+ b * np.power(X[:, 2], 4) * np.sin(X[:, 0]) | ||
) | ||
|
||
return Y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
""" | ||
Additive function | ||
============================================== | ||
.. math:: | ||
f(x) = a \cdot X_1 + b \cdot X_2, \quad X_1, X_2 \sim \mathcal{N}(0, 1), \quad a,b \in \mathbb{R} | ||
""" | ||
|
||
# %% | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
from UQpy.run_model.RunModel import RunModel | ||
from UQpy.run_model.model_execution.PythonModel import PythonModel | ||
from UQpy.distributions import Normal | ||
from UQpy.distributions.collection.JointIndependent import JointIndependent | ||
from UQpy.sensitivity.Chatterjee import Chatterjee | ||
from UQpy.sensitivity.CramervonMises import CramervonMises as cvm | ||
from UQpy.sensitivity.Sobol import Sobol | ||
from UQpy.sensitivity.PostProcess import * | ||
|
||
np.random.seed(123) | ||
|
||
# %% [markdown] | ||
# **Define the model and input distributions** | ||
|
||
# Create Model object | ||
a, b = 1, 2 | ||
|
||
model = PythonModel( | ||
model_script="local_additive.py", | ||
model_object_name="evaluate", | ||
var_names=[ | ||
"X_1", | ||
"X_2", | ||
], | ||
delete_files=True, | ||
params=[a, b], | ||
) | ||
|
||
runmodel_obj = RunModel(model=model) | ||
|
||
# Define distribution object | ||
dist_object = JointIndependent([Normal(0, 1)] * 2) | ||
|
||
# %% [markdown] | ||
# **Compute Sobol indices** | ||
|
||
# %% [markdown] | ||
SA_sobol = Sobol(runmodel_obj, dist_object) | ||
|
||
computed_indices_sobol = SA_sobol.run(n_samples=50_000) | ||
|
||
# %% [markdown] | ||
# **First order Sobol indices** | ||
# | ||
# Expected first order Sobol indices: | ||
# | ||
# :math:`\mathrm{S}_1 = \frac{a^2 \cdot \mathbb{V}[X_1]}{a^2 \cdot \mathbb{V}[X_1] + b^2 \cdot \mathbb{V}[X_2]} = \frac{1^2 \cdot 1}{1^2 \cdot 1 + 2^2 \cdot 1} = 0.2` | ||
# | ||
# :math:`\mathrm{S}_2 = \frac{b^2 \cdot \mathbb{V}[X_2]}{a^2 \cdot \mathbb{V}[X_1] + b^2 \cdot \mathbb{V}[X_2]} = \frac{2^2 \cdot 1}{1^2 \cdot 1 + 2^2 \cdot 1} = 0.8` | ||
|
||
# %% | ||
computed_indices_sobol["sobol_i"] | ||
|
||
# %% [markdown] | ||
# **Compute Chatterjee indices** | ||
|
||
# %% [markdown] | ||
SA_chatterjee = Chatterjee(runmodel_obj, dist_object) | ||
|
||
computed_indices_chatterjee = SA_chatterjee.run(n_samples=50_000) | ||
|
||
# %% | ||
computed_indices_chatterjee["chatterjee_i"] | ||
|
||
# %% | ||
SA_cvm = cvm(runmodel_obj, dist_object) | ||
|
||
# Compute CVM indices using the pick and freeze algorithm | ||
computed_indices_cvm = SA_cvm.run(n_samples=20_000, estimate_sobol_indices=True) | ||
|
||
# %% | ||
computed_indices_cvm["CVM_i"] | ||
|
||
# %% | ||
# **Plot all indices** | ||
|
||
num_vars = 2 | ||
_idx = np.arange(num_vars) | ||
variable_names = [r"$X_{}$".format(i + 1) for i in range(num_vars)] | ||
|
||
# round to 2 decimal places | ||
indices_1 = np.around(computed_indices_sobol["sobol_i"][:, 0], decimals=2) | ||
indices_2 = np.around(computed_indices_chatterjee["chatterjee_i"][:, 0], decimals=2) | ||
indices_3 = np.around(computed_indices_cvm["CVM_i"][:, 0], decimals=2) | ||
|
||
fig, ax = plt.subplots() | ||
width = 0.3 | ||
ax.spines["top"].set_visible(False) | ||
ax.spines["right"].set_visible(False) | ||
|
||
bar_indices_1 = ax.bar( | ||
_idx - width, # x-axis | ||
indices_1, # y-axis | ||
width=width, # bar width | ||
color="C0", # bar color | ||
# alpha=0.5, # bar transparency | ||
label="Sobol", # bar label | ||
ecolor="k", # error bar color | ||
capsize=5, # error bar cap size in pt | ||
) | ||
|
||
bar_indices_2 = ax.bar( | ||
_idx, # x-axis | ||
indices_2, # y-axis | ||
width=width, # bar width | ||
color="C2", # bar color | ||
# alpha=0.5, # bar transparency | ||
label="Chatterjee", # bar label | ||
ecolor="k", # error bar color | ||
capsize=5, # error bar cap size in pt | ||
) | ||
|
||
bar_indices_3 = ax.bar( | ||
_idx + width, # x-axis | ||
indices_3, # y-axis | ||
width=width, # bar width | ||
color="C3", # bar color | ||
# alpha=0.5, # bar transparency | ||
label="Cramér-von Mises", # bar label | ||
ecolor="k", # error bar color | ||
capsize=5, # error bar cap size in pt | ||
) | ||
|
||
ax.bar_label(bar_indices_1, label_type="edge", fontsize=10) | ||
ax.bar_label(bar_indices_2, label_type="edge", fontsize=10) | ||
ax.bar_label(bar_indices_3, label_type="edge", fontsize=10) | ||
ax.set_xticks(_idx, variable_names) | ||
ax.set_xlabel("Model inputs") | ||
ax.set_title("Comparison of sensitivity indices") | ||
ax.set_ylim(top=1) # set only upper limit of y to 1 | ||
ax.legend() | ||
|
||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
r""" | ||
Ishigami function | ||
============================================== | ||
The ishigami function is a non-linear, non-monotonic function that is commonly used to | ||
benchmark uncertainty and senstivity analysis methods. | ||
.. math:: | ||
f(x_1, x_2, x_3) = sin(x_1) + a \cdot sin^2(x_2) + b \cdot x_3^4 sin(x_1) | ||
.. math:: | ||
x_1, x_2, x_3 \sim \mathcal{U}(-\pi, \pi), \quad a, b\in \mathbb{R} | ||
""" | ||
|
||
# %% | ||
import numpy as np | ||
|
||
from UQpy.run_model.RunModel import RunModel | ||
from UQpy.run_model.model_execution.PythonModel import PythonModel | ||
from UQpy.distributions import Uniform | ||
from UQpy.distributions.collection.JointIndependent import JointIndependent | ||
from UQpy.sensitivity.Chatterjee import Chatterjee | ||
from UQpy.sensitivity.CramervonMises import CramervonMises as cvm | ||
from UQpy.sensitivity.Sobol import Sobol | ||
from UQpy.sensitivity.PostProcess import * | ||
|
||
np.random.seed(123) | ||
|
||
# %% [markdown] | ||
# **Define the model and input distributions** | ||
|
||
# %% | ||
# Create Model object | ||
model = PythonModel( | ||
model_script="local_ishigami.py", | ||
model_object_name="evaluate", | ||
var_names=[r"$X_1$", "$X_2$", "$X_3$"], | ||
delete_files=True, | ||
params=[7, 0.1], | ||
) | ||
|
||
runmodel_obj = RunModel(model=model) | ||
|
||
# Define distribution object | ||
dist_object = JointIndependent([Uniform(-np.pi, 2 * np.pi)] * 3) | ||
|
||
# %% [markdown] | ||
# **Compute Sobol indices** | ||
|
||
# %% | ||
SA_sobol = Sobol(runmodel_obj, dist_object) | ||
|
||
computed_indices_sobol = SA_sobol.run(n_samples=100_000) | ||
|
||
# %% [markdown] | ||
# **First order Sobol indices** | ||
# | ||
# Expected first order Sobol indices: | ||
# | ||
# :math:`S_1` = 0.3139 | ||
# | ||
# :math:`S_2` = 0.4424 | ||
# | ||
# :math:`S_3` = 0.0 | ||
|
||
# %% | ||
computed_indices_sobol["sobol_i"] | ||
|
||
# %% [markdown] | ||
# **Total order Sobol indices** | ||
# | ||
# Expected total order Sobol indices: | ||
# | ||
# :math:`S_{T_1}` = 0.55758886 | ||
# | ||
# :math:`S_{T_2}` = 0.44241114 | ||
# | ||
# :math:`S_{T_3}` = 0.24368366 | ||
|
||
# %% | ||
computed_indices_sobol["sobol_total_i"] | ||
|
||
# %% [markdown] | ||
# **Compute Chatterjee indices** | ||
|
||
# %% [markdown] | ||
SA_chatterjee = Chatterjee(runmodel_obj, dist_object) | ||
|
||
computed_indices_chatterjee = SA_chatterjee.run(n_samples=50_000) | ||
|
||
# %% | ||
computed_indices_chatterjee["chatterjee_i"] | ||
|
||
# %% [markdown] | ||
# **Compute Cramér-von Mises indices** | ||
SA_cvm = cvm(runmodel_obj, dist_object) | ||
|
||
# Compute CVM indices using the pick and freeze algorithm | ||
computed_indices_cvm = SA_cvm.run(n_samples=20_000, estimate_sobol_indices=True) | ||
|
||
# %% | ||
computed_indices_cvm["CVM_i"] | ||
|
||
# %% | ||
# **Plot all indices** | ||
|
||
num_vars = 3 | ||
_idx = np.arange(num_vars) | ||
variable_names = [r"$X_{}$".format(i + 1) for i in range(num_vars)] | ||
|
||
# round to 2 decimal places | ||
indices_1 = np.around(computed_indices_sobol["sobol_i"][:, 0], decimals=2) | ||
indices_2 = np.around(computed_indices_chatterjee["chatterjee_i"][:, 0], decimals=2) | ||
indices_3 = np.around(computed_indices_cvm["CVM_i"][:, 0], decimals=2) | ||
|
||
fig, ax = plt.subplots() | ||
width = 0.3 | ||
ax.spines["top"].set_visible(False) | ||
ax.spines["right"].set_visible(False) | ||
|
||
bar_indices_1 = ax.bar( | ||
_idx - width, # x-axis | ||
indices_1, # y-axis | ||
width=width, # bar width | ||
color="C0", # bar color | ||
# alpha=0.5, # bar transparency | ||
label="Sobol", # bar label | ||
ecolor="k", # error bar color | ||
capsize=5, # error bar cap size in pt | ||
) | ||
|
||
bar_indices_2 = ax.bar( | ||
_idx, # x-axis | ||
indices_2, # y-axis | ||
width=width, # bar width | ||
color="C2", # bar color | ||
# alpha=0.5, # bar transparency | ||
label="Chatterjee", # bar label | ||
ecolor="k", # error bar color | ||
capsize=5, # error bar cap size in pt | ||
) | ||
|
||
bar_indices_3 = ax.bar( | ||
_idx + width, # x-axis | ||
indices_3, # y-axis | ||
width=width, # bar width | ||
color="C3", # bar color | ||
# alpha=0.5, # bar transparency | ||
label="Cramér-von Mises", # bar label | ||
ecolor="k", # error bar color | ||
capsize=5, # error bar cap size in pt | ||
) | ||
|
||
ax.bar_label(bar_indices_1, label_type="edge", fontsize=10) | ||
ax.bar_label(bar_indices_2, label_type="edge", fontsize=10) | ||
ax.bar_label(bar_indices_3, label_type="edge", fontsize=10) | ||
ax.set_xticks(_idx, variable_names) | ||
ax.set_xlabel("Model inputs") | ||
ax.set_title("Comparison of sensitivity indices") | ||
ax.set_ylim(top=1) # set only upper limit of y to 1 | ||
ax.legend() | ||
|
||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters