Skip to content

Commit

Permalink
Remove d_prototype & create type tests for p_prototype (#104)
Browse files Browse the repository at this point in the history
* Removed d_prototype

* bug fix: removed d_prototype keywords in tests

* Update test/runtests.jl

Co-authored-by: Hendrik Ranocha <[email protected]>

* Set version to v0.2.0

* Updated News

---------

Co-authored-by: Hendrik Ranocha <[email protected]>
  • Loading branch information
SKopecz and ranocha authored Jul 18, 2024
1 parent 69db9ab commit f86c263
Show file tree
Hide file tree
Showing 6 changed files with 97 additions and 31 deletions.
7 changes: 7 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,11 @@ PositiveIntegrators.jl.jl follows the interpretation of
used in the Julia ecosystem. Notable changes will be documented in this file
for human readability.

## Changes when updating to v0.2 from v0.1.x

#### Removed

- The optional keyword argument `d_prototype` has been removed from `PDSProblem`

## Changes in the v0.1 lifecycle

Expand All @@ -21,3 +26,5 @@ for human readability.
`prob_pds_linmod`, `prob_pds_nonlinmod`, `prob_pds_npzd`, `prob_pds_robertson`,
`prob_pds_sir`, `prob_pds_stratreac`
- Modified Patankar methods `MPE` and `MPRK22`


2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "PositiveIntegrators"
uuid = "d1b20bf0-b083-4985-a874-dc5121669aa5"
authors = ["Stefan Kopecz, Hendrik Ranocha, and contributors"]
version = "0.1.16"
version = "0.2.0"

[deps]
FastBroadcast = "7034ab61-46d4-4ed7-9d0f-46aef9175898"
Expand Down
12 changes: 6 additions & 6 deletions src/mprk.jl
Original file line number Diff line number Diff line change
Expand Up @@ -363,7 +363,7 @@ function alg_cache(alg::MPE, u, rate_prototype, ::Type{uEltypeNoUnits},
linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true,
assumptions = LinearSolve.OperatorAssumptions(true))

MPECache(P, zero(u), σ, tab, linsolve_rhs, linsolve)
MPECache(P, similar(u), σ, tab, linsolve_rhs, linsolve)
else
throw(ArgumentError("MPE can only be applied to production-destruction systems"))
end
Expand Down Expand Up @@ -670,8 +670,8 @@ function alg_cache(alg::MPRK22, u, rate_prototype, ::Type{uEltypeNoUnits},
assumptions = LinearSolve.OperatorAssumptions(true))

MPRK22Cache(tmp, P, P2,
zero(u), # D
zero(u), # D2
similar(u), # D
similar(u), # D2
σ,
tab, #MPRK22ConstantCache
linsolve)
Expand Down Expand Up @@ -1246,9 +1246,9 @@ function alg_cache(alg::Union{MPRK43I, MPRK43II}, u, rate_prototype, ::Type{uElt
assumptions = LinearSolve.OperatorAssumptions(true))
MPRK43ConservativeCache(tmp, tmp2, P, P2, P3, σ, tab, linsolve)
elseif f isa PDSFunction
D = zero(u)
D2 = zero(u)
D3 = zero(u)
D = similar(u)
D2 = similar(u)
D3 = similar(u)

linprob = LinearProblem(P3, _vec(tmp))
linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true,
Expand Down
21 changes: 7 additions & 14 deletions src/proddest.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,8 @@ abstract type AbstractPDSProblem end

"""
PDSProblem(P, D, u0, tspan, p = NullParameters();
p_prototype = nothing,
d_prototype = nothing,
analytic = nothing)
p_prototype = nothing,
analytic = nothing)
A structure describing a system of ordinary differential equations in form of a production-destruction system (PDS).
`P` denotes the production matrix.
Expand All @@ -20,13 +19,9 @@ The functions `P` and `D` can be used either in the out-of-place form with signa
### Keyword arguments: ###
- `p_prototype`: If `P` is given in in-place form, `p_prototype` is used to store evaluations of `P`.
- `p_prototype`: If `P` is given in in-place form, `p_prototype` or copies thereof are used to store evaluations of `P`.
If `p_prototype` is not specified explicitly and `P` is in-place, then `p_prototype` will be internally
set to `zeros(eltype(u0), (length(u0), length(u0)))`.
- `d_prototype`: If `D` is given in in-place form, `d_prototype` is used to store evaluations of `D`.
If `d_prototype` is not specified explicitly and `D` is in-place, then `d_prototype` will be internally
set to `zeros(eltype(u0), (length(u0),))`.
- `analytic`: The analytic solution of a PDS must be given in the form `f(u0,p,t)`.
Specifying the analytic solution can be useful for plotting and convergence tests.
Expand Down Expand Up @@ -86,18 +81,16 @@ end
# (arbitrary functions)
function PDSProblem{iip}(P, D, u0, tspan, p = NullParameters();
p_prototype = nothing,
d_prototype = nothing,
analytic = nothing,
kwargs...) where {iip}

# p_prototype is used to store evaluations of P, if P is in-place.
if isnothing(p_prototype) && iip
p_prototype = zeros(eltype(u0), (length(u0), length(u0)))
end
# d_prototype is used to store evaluations of D, if D is in-place.
if isnothing(d_prototype) && iip
d_prototype = zeros(eltype(u0), (length(u0),))
end
# If a PDSFunction is to be evaluated and D is in-place, then d_prototype is used to store
# evaluations of D.
d_prototype = similar(u0)

PD = PDSFunction{iip}(P, D; p_prototype = p_prototype, d_prototype = d_prototype,
analytic = analytic)
Expand Down Expand Up @@ -177,7 +170,7 @@ The function `P` can be given either in the out-of-place form with signature
### Keyword arguments: ###
- `p_prototype`: If `P` is given in in-place form, `p_prototype` is used to store evaluations of `P`.
- `p_prototype`: If `P` is given in in-place form, `p_prototype` or copies thereof are used to store evaluations of `P`.
If `p_prototype` is not specified explicitly and `P` is in-place, then `p_prototype` will be internally
set to `zeros(eltype(u0), (length(u0), length(u0)))`.
- `analytic`: The analytic solution of a PDS must be given in the form `f(u0,p,t)`.
Expand Down
10 changes: 5 additions & 5 deletions src/sspmprk.jl
Original file line number Diff line number Diff line change
Expand Up @@ -252,8 +252,8 @@ function alg_cache(alg::SSPMPRK22, u, rate_prototype, ::Type{uEltypeNoUnits},
assumptions = LinearSolve.OperatorAssumptions(true))

SSPMPRK22Cache(tmp, P, P2,
zero(u), # D
zero(u), # D2
similar(u), # D
similar(u), # D2
σ,
tab, #MPRK22ConstantCache
linsolve)
Expand Down Expand Up @@ -760,9 +760,9 @@ function alg_cache(alg::SSPMPRK43, u, rate_prototype, ::Type{uEltypeNoUnits},
assumptions = LinearSolve.OperatorAssumptions(true))
SSPMPRK43ConservativeCache(tmp, tmp2, P, P2, P3, σ, ρ, tab, linsolve)
elseif f isa PDSFunction
D = zero(u)
D2 = zero(u)
D3 = zero(u)
D = similar(u)
D2 = similar(u)
D3 = similar(u)

linprob = LinearProblem(P3, _vec(tmp))
linsolve = init(linprob, alg.linsolve, alias_A = true, alias_b = true,
Expand Down
76 changes: 71 additions & 5 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -495,17 +495,14 @@ end
# problem with sparse matrices
p_prototype = spdiagm(-1 => ones(eltype(u0), N - 1),
N - 1 => ones(eltype(u0), 1))
d_prototype = zero(u0)
linear_advection_fd_upwind_PDS_sparse = PDSProblem(linear_advection_fd_upwind_P!,
linear_advection_fd_upwind_D!,
u0, tspan;
p_prototype = p_prototype,
d_prototype = d_prototype)
p_prototype = p_prototype)
linear_advection_fd_upwind_PDS_sparse_2 = PDSProblem{true}(linear_advection_fd_upwind_P!,
linear_advection_fd_upwind_D!,
u0, tspan;
p_prototype = p_prototype,
d_prototype = d_prototype)
p_prototype = p_prototype)
linear_advection_fd_upwind_ConsPDS_sparse = ConservativePDSProblem(linear_advection_fd_upwind_P!,
u0, tspan;
p_prototype = p_prototype)
Expand Down Expand Up @@ -1201,6 +1198,75 @@ end
end
end

# Here we check that the type of p_prototype actually
# defines the types of the Ps inside the algorithm caches.
# We test sparse, tridiagonal, and dense matrices.
@testset "Prototype type check" begin
#prod and dest functions
prod_inner! = (P, u, p, t) -> begin
fill!(P, zero(eltype(P)))
for i in 1:(length(u) - 1)
P[i, i + 1] = i * u[i]
end
return nothing
end
prod_sparse! = (P, u, p, t) -> begin
@test P isa SparseMatrixCSC
prod_inner!(P, u, p, t)
return nothing
end
prod_tridiagonal! = (P, u, p, t) -> begin
@test P isa Tridiagonal
prod_inner!(P, u, p, t)
return nothing
end
prod_dense! = (P, u, p, t) -> begin
@test P isa Matrix
prod_inner!(P, u, p, t)
return nothing
end
dest! = (D, u, p, t) -> begin
fill!(D, zero(eltype(D)))
end
#prototypes
P_tridiagonal = Tridiagonal([0.1, 0.2, 0.3],
[0.0, 0.0, 0.0, 0.0],
[0.4, 0.5, 0.6])
P_dense = Matrix(P_tridiagonal)
P_sparse = sparse(P_tridiagonal)
# problem definition
u0 = [1.0, 1.5, 2.0, 2.5]
tspan = (0.0, 1.0)
dt = 0.5
## conservative PDS
prob_default = ConservativePDSProblem(prod_dense!, u0, tspan)
prob_tridiagonal = ConservativePDSProblem(prod_tridiagonal!, u0, tspan;
p_prototype = P_tridiagonal)
prob_dense = ConservativePDSProblem(prod_dense!, u0, tspan;
p_prototype = P_dense)
prob_sparse = ConservativePDSProblem(prod_sparse!, u0, tspan;
p_prototype = P_sparse)
## nonconservative PDS
prob_default2 = PDSProblem(prod_dense!, dest!, u0, tspan)
prob_tridiagonal2 = PDSProblem(prod_tridiagonal!, dest!, u0, tspan;
p_prototype = P_tridiagonal)
prob_dense2 = PDSProblem(prod_dense!, dest!, u0, tspan;
p_prototype = P_dense)
prob_sparse2 = PDSProblem(prod_sparse!, dest!, u0, tspan;
p_prototype = P_sparse)
#solve and test
for alg in (MPE(), MPRK22(0.5), MPRK22(1.0), MPRK43I(1.0, 0.5),
MPRK43I(0.5, 0.75),
MPRK43II(2.0 / 3.0), MPRK43II(0.5), SSPMPRK22(0.5, 1.0),
SSPMPRK43())
for prob in (prob_default, prob_tridiagonal, prob_dense, prob_sparse,
prob_default2,
prob_tridiagonal2, prob_dense2, prob_sparse2)
solve(prob, alg; dt, adaptive = false)
end
end
end

# Here we check the convergence order of pth-order schemes for which
# also an interpolation of order p is available
@testset "Convergence tests (conservative)" begin
Expand Down

2 comments on commit f86c263

@ranocha
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/111313

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.2.0 -m "<description of version>" f86c263aeb509df3d08a194cef45a7afafb7fe4a
git push origin v0.2.0

Please sign in to comment.