Hakjin Lee, Minki Song, Jamyoung Koo, Junghoon Seo
[Paper
]
The RHINO is a robust DETR architecture designed for detecting rotated objects. It demonstrates promising results, exceeding 60 mAP on DOTA-v2.0.
DOTA-v2.0 (Single-Scale Training and Testing)
Method | Backbone | AP50 | Config | Download |
---|---|---|---|---|
RHINO | ResNet50 (1024,1024,200) | 59.26 | rhino_r50_dota2 | model |
RHINO | Swin-T (1024,1024,200) | 60.72 | rhino_swint_dota2 | model |
DOTA-v1.5 (Single-Scale Training and Testing)
Method | Backbone | AP50 | Config | Download |
---|---|---|---|---|
RHINO | ResNet50 (1024,1024,200) | 71.96 | rhino_r50_dotav15 | model |
RHINO | Swin-T (1024,1024,200) | 73.46 | rhino_swint_dotav15 | model |
DOTA-v1.0 (Single-Scale Training and Testing)
Method | Backbone | AP50 | Config | Download |
---|---|---|---|---|
RHINO | ResNet50 (1024,1024,200) | 78.68 | rhino_r50_dota | model |
RHINO | Swin-T (1024,1024,200) | 79.42 | rhino_swint_dota | model |
# torch>=1.9.1 is required.
pip install openmim mmengine==0.7.3
mim install mmcv==2.0.0
pip install mmdet==3.0.0
pip3 install --no-cache-dir -e ".[optional]"
or check the Dockerfile.
Details are described in https://github.com/open-mmlab/mmrotate/blob/main/tools/data/dota/README.md
Specifically, run below code.
python3 tools/data/dota/split/img_split.py --base-json \
tools/data/dota/split/split_configs/ss_trainval.json
python3 tools/data/dota/split/img_split.py --base-json \
tools/data/dota/split/split_configs/ss_test.json
To train the model(s) in the paper, run this command:
# DOTA-v2.0 R-50
export CONFIG='configs/rhino/rhino_phc_haus-4scale_r50_2xb2-36e_dotav2.py'
bash tools/dist_train.sh $CONFIG 2
To evaluate our models on DOTA, run:
# example
export CONFIG='configs/rhino/rhino_phc_haus-4scale_r50_2xb2-36e_dotav2.py'
export CKPT='work_dirs/rhino_phc_haus-4scale_r50_2xb2-36e_dotav2/epoch_36.pth'
python3 tools/test.py $CONFIG $CKPT
Evaluation is processed in the official DOTA evaluation server.
This project is licensed under CC-BY-NC. It is available for academic purposes only.
If you find our work helpful for your research, please consider citing the following BibTeX entry.
@misc{lee2023hausdorff,
title={Hausdorff Distance Matching with Adaptive Query Denoising for Rotated Detection Transformer},
author={Hakjin Lee and Minki Song and Jamyoung Koo and Junghoon Seo},
year={2023},
eprint={2305.07598},
archivePrefix={arXiv},
primaryClass={cs.CV}
}