-
Notifications
You must be signed in to change notification settings - Fork 5
An explainable Deep Machine Vision framework for Plant Stress Phenotyping
License
SCSLabISU/xPLNet
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
################################################################################################## DATA ACCESS FORM: Please fill out this form that asks for your name, a valid email address and the name of the institution you are affiliated with, to gain access to the data and model weights: https://docs.google.com/forms/d/1FggY3gRfDUxH8D4hCH-OHwEIHqa2tSdFXwobvM27Qh4/edit Thank you for your interest. The download link will be sent to your email once the form is completed. Please note: The data available through this link are of RGB images, each of shape [64 X 64 X 3]. If a higher resolution dataset is required, please address your request to: [email protected] (while cc'ing: [email protected]) Users are welcome to create "Issues" within this repository if they face any problems regarding execution and/or deployment of the trained model on their own data-sets or on the shared data: https://github.com/SCSLabISU/xPLNet/issues ################################################################################################## LABELLING INFORMATION for shared data: Please follow Figure 2 for class/label information for the soybean leaf image datset. Images within a particular folder fall under the class information associated with the folder name (number) as shown in Figure 2. For example, images in folder '0' correspond to images under the "Bacterial Blight" class and so on. ################################################################################################## CITATION: If you use this dataset and/or the methods proposed in our research please cite our PNAS paper available at: http://www.pnas.org/content/115/18/4613 Bibtex: @article {Ghosal4613, author = {Ghosal, Sambuddha and Blystone, David and Singh, Asheesh K. and Ganapathysubramanian, Baskar and Singh, Arti and Sarkar, Soumik}, title = {An explainable deep machine vision framework for plant stress phenotyping}, volume = {115}, number = {18}, pages = {4613--4618}, year = {2018}, doi = {10.1073/pnas.1716999115}, publisher = {National Academy of Sciences}, issn = {0027-8424}, URL = {http://www.pnas.org/content/115/18/4613}, eprint = {http://www.pnas.org/content/115/18/4613.full.pdf}, journal = {Proceedings of the National Academy of Sciences} } ################################################################################################## THE FOLLOWING DESCRIBES THE MODEL ARCHITECTURE AND HYPER-PARAMETERS (use the seed # provided to reproduce the results from the paper): seed = 1337 (use numpy.random.seed(seed)) Arch 1: _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_1 (Conv2D) (None, 128, 62, 62) 3584 _________________________________________________________________ batch_normalization_1 (Batch (None, 128, 62, 62) 248 _________________________________________________________________ conv2d_2 (Conv2D) (None, 128, 60, 60) 147584 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 128, 30, 30) 0 _________________________________________________________________ batch_normalization_2 (Batch (None, 128, 30, 30) 120 _________________________________________________________________ conv2d_3 (Conv2D) (None, 128, 28, 28) 147584 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 128, 14, 14) 0 _________________________________________________________________ batch_normalization_3 (Batch (None, 128, 14, 14) 56 _________________________________________________________________ conv2d_4 (Conv2D) (None, 128, 12, 12) 147584 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (None, 128, 6, 6) 0 _________________________________________________________________ batch_normalization_4 (Batch (None, 128, 6, 6) 24 _________________________________________________________________ conv2d_5 (Conv2D) (None, 128, 4, 4) 147584 _________________________________________________________________ max_pooling2d_4 (MaxPooling2 (None, 128, 2, 2) 0 _________________________________________________________________ flatten_1 (Flatten) (None, 512) 0 _________________________________________________________________ dropout_1 (Dropout) (None, 512) 0 _________________________________________________________________ dense_1 (Dense) (None, 500) 256500 _________________________________________________________________ dropout_2 (Dropout) (None, 500) 0 _________________________________________________________________ dense_2 (Dense) (None, 100) 50100 _________________________________________________________________ dropout_3 (Dropout) (None, 100) 0 _________________________________________________________________ dense_3 (Dense) (None, 9) 909 ================================================================= Total params: 901,877 Trainable params: 901,653 Non-trainable params: 224 _________________________________________________________________ OPTIMIZER USED: Adam (lr = 0.001; the default lr from "Adam: A Method for Stochastic Optimization" by Kingma et al.) BATCH_SIZE for Training: 60 Epochs = 150 (90s per epoch) INPUT SHAPE: (3, 64, 64) [channels first] INPUT PRE-PROCESSING: Input to the network must be normalized by the maximum value of the input image channels before being fed to the trained network for online/offline classification. FRONTEND: Keras BACKEND: Theano GPU Used: NVIDIA GeForce GTX TITAN X (12207 MB of dedicated GPU memory) CUDA 8.0 (cuDNN 5.1) Training Samples = 59184 (validation split = 0.1) Test Samples = 6576 Test Accuracy = 94.13%
About
An explainable Deep Machine Vision framework for Plant Stress Phenotyping
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published