Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation (NeurIPS 2022)
PyTorch implementation for the state-of-art transfer attack: Reverse Adversarial Perturbation (RAP).
Boosting the Transferability of Adversarial Attacks with Reverse Adversarial Perturbation
Zeyu Qin*, Yanbo Fan*, Yi Liu, Li Shen, Yong Zhang, Jue Wang, Baoyuan Wu
In NeurIPS 2022.
- rap_attack.py: full version
-
targeted attack with DI and logit loss from ResNet-50
python /targeted_attack/rap_attack.py --num_data_augmentation 1 --targeted --transpoint 400 --seed 9018 --source_model resnet_50 --loss_function MaxLogit --DI --max_iterations 300
-
RAP targeted attack with DI and logit loss from ResNet-50
python /targeted_attack/rap_attack.py --num_data_augmentation 1 --targeted --transpoint 0 --seed 9018 --source_model resnet_50 --loss_function MaxLogit --DI --max_iterations 300
-
RAP-LS targeted attack with DI and logit loss from ResNet-50
python /targeted_attack/rap_attack.py --num_data_augmentation 1 --targeted --transpoint 100 --seed 9018 --source_model resnet_50 --loss_function MaxLogit --DI --max_iterations 300
- targeted attack or not : --targeted or None
- source model: -- source_model (resnet_50, densenet, inception, vgg16)
- random seed: --seed 1234
- interation number of outer minimization: --max_iterations
- MI or not: --MI or None
- DI or not: --DI or None
- TI or not: --TI or None
- SI or not: (--SI and --m2 5) or None
- Admix or not:
(--m1 3 an --m2 5) or None
--strength 0.2
- transpoint:
--transpoint 400: baseline method
--transpoint 0: baseline+RAP
--transpoint 100: baseline+RAP-LS
- loss function: --loss_function: CE or MaxLogit for outer minimization
- epsilon of attacks: --adv_epsilon: 16/255, the perturbation budget for - inner maximization
--adv_steps: 8, the step for inner maximization