-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathActive_noise_cancellation.vhd
1008 lines (811 loc) · 26.5 KB
/
Active_noise_cancellation.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
LIBRARY ieee;
USE ieee.std_logic_1164.all;
entity Active_noise_cancellation is
port(
KEY: in std_logic_vector(3 downto 0);
CLOCK_50: in std_logic;
AUD_ADCDAT: in std_logic ;
AUD_DACDAT: out std_logic ;
AUD_ADCLRCK: out std_logic;
AUD_DACLRCK: out std_logic;
AUD_XCK: out std_logic;
AUD_BCLK: out std_logic;
CLOCK_27: in std_logic;
SW: in std_logic_vector(0 downto 0);
LEDR: out std_logic_vector (17 downto 0);
LEDG: out std_logic_vector (8 downto 0);
HEX0, HEX1: out std_LOGIC_VECTOR (6 downto 0)
);
end Active_noise_cancellation;
architecture toplevel of Active_noise_cancellation is
component clockBuffer IS
PORT
(
areset : IN STD_LOGIC := '0';
inclk0 : IN STD_LOGIC := '0';
c0 : OUT STD_LOGIC
);
END component;
component audioPLLClock IS
PORT
(
areset : IN STD_LOGIC := '0';
inclk0 : IN STD_LOGIC := '0';
c0 : OUT STD_LOGIC
);
END component;
component delayCounter is
port(
clock,reset: in std_logic;
resetAdc: out std_logic
);
end component;
component AdcDacController is
port(
reset_n: in std_logic;
clock18MHz_in: in std_logic;
A_to_D: in std_logic;
D_to_A: out std_logic;
bitClock: out std_logic;
D_to_A_LorR: out std_logic;
A_to_D_LorR: out std_logic;
out_select: in std_logic_vector(0 downto 0);
ledr_on : out std_logic_vector(17 downto 0);
hex1_sig : out std_LOGIC_VECTOR(6 downto 0);
hex0_sig : out std_LOGIC_VECTOR (6 downto 0)
);
end component;
signal clock50MHz: std_logic;
signal clock18MHz: std_logic;
signal reset: std_logic;
signal codecreset_n: std_logic;
signal adcDat_sig: std_logic;
signal adcLRCK_sig: std_logic;
signal dacLRCK_sig: std_logic;
signal dacDat_sig: std_logic;
signal bck_sig: std_logic;
signal out_select: std_logic_vector(0 downto 0);
signal ledr_sig : std_LOGIC_VECTOR(17 downto 0);
signal hex0_on, hex1_on : std_LOGIC_VECTOR(6 downto 0);
begin
reset <= not KEY(3);
out_select <= SW(0 downto 0);
clockBufferInstance: clockBuffer port map(reset,CLOCK_50,clock50MHz);
audioPLLClockMap: audioPLLClock port map(reset, CLOCK_27, clock18MHz);
delayCounterMap: delayCounter port map(clock50MHz, reset, codecreset_n);
AdcDacControllerMap: AdcDacController port map(codecreset_n, clock18MHz, adcDat_sig, dacDat_sig,
bck_sig, dacLRCK_sig, adcLRCK_sig, out_select, ledr_sig, hex0_on, hex1_on);
adcDat_sig <= AUD_ADCDAT;
AUD_ADCLRCK <= adcLRCK_sig;
AUD_DACLRCK <= dacLRCK_sig;
AUD_DACDAT <= dacDat_sig;
AUD_XCK <= clock18MHz;
AUD_BCLK <= bck_sig;
LEDR <= ledr_sig ;
LEDG(6) <= reset;
HEX0 <= hex0_on;
HEX1 <= hex1_on;
end toplevel;
library ieee;
use ieee.std_logic_1164.all;
entity AdcDacController is
port(
A_to_D: in std_logic;
A_to_D_LorR: out std_logic;
D_to_A: out std_logic;
D_to_A_LorR: out std_logic;
bitClock: out std_logic;
reset_n: in std_logic;
clock18MHz_in: in std_logic;
out_select: in std_logic_vector(0 downto 0);
ledr_on : out std_logic_vector(17 downto 0);
hex1_sig : out std_LOGIC_VECTOR(6 downto 0);
hex0_sig : out std_LOGIC_VECTOR (6 downto 0)
);
end AdcDacController;
architecture behavior of AdcDacController is
component lms is
port(
clk : in std_logic;
reset : in std_logic;
clk_enable : in std_logic;
input : in std_logic_vector(15 downto 0);
desired : in std_logic_vector(15 downto 0);
step_size : in std_logic_vector(15 downto 0);
reset_weights : in std_logic;
ce_out : out std_logic;
error_out : out std_logic_vector(15 downto 0)
);
end component;
component bclk_counter is
port(
reset: in std_logic;
mclk: in std_logic;
bclk: out std_logic
);
end component;
component LRchannelCounter is
port(
reset: in std_logic;
bclk: in std_logic;
LRchannel: out std_logic
);
end component;
signal reset: std_logic;
signal bitClock_sig: std_logic;
signal LRchannel_sig: std_logic;
signal bitCounter: integer range 15 downto 0 := 15;
signal reset_1 : std_logic := '0';
signal clk : std_logic;
signal clk_enable : std_logic :='1';
signal input : std_logic_vector(15 downto 0);
signal desired : std_logic_vector(15 downto 0);
signal step_size : std_logic_vector(15 downto 0):= "0000000000000100";
signal reset_weights : std_logic:= '0';
signal ce_out : std_logic;
signal error_out : std_logic_vector(15 downto 0);
begin
reset <= not reset_n;
bclk_counterMap: bclk_counter port map(reset, clock18MHz_in, bitClock_sig);
LRchannelCounterMap: LRchannelCounter port map(reset, bitClock_sig, LRchannel_sig);
bitClock <= bitClock_sig;
D_to_A_LorR <= LRchannel_sig;
A_to_D_LorR <= LRchannel_sig;
process(bitClock_sig, bitCounter)
begin
if rising_edge(bitClock_sig) then
if bitCounter > 0 then
bitCounter <= bitCounter - 1;
else
bitCounter <= 15;
end if;
end if;
end process;
process(A_to_D, out_select)
begin
if out_select = "0" then
D_to_A <= A_to_D;
ledr_on(17 downto 0) <= "000000000000000000";
hex1_sig (6 downto 0) <= "1111111";
hex0_sig (6 downto 0) <= "1111111";
elsif out_select = "1" then
D_to_A <= not A_to_D;
ledr_on(17 downto 0) <= "111111111111111111";
hex1_sig (6 downto 0) <= "0101011";
hex0_sig (6 downto 0) <= "1000000";
end if;
end process;
end behavior;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity delayCounter is
port(
clock,reset: in std_logic;
resetAdc: out std_logic
);
end delayCounter;
architecture behavior of delayCounter is
signal count: integer range 0 to 20000000;
signal output: std_logic;
begin
process(clock,reset,output)
begin
if (reset = '0') then
if rising_edge(clock) then
if output = '0' then
if count = 20000000 then
count <= 0;
output <= '1';
else
count <= count + 1;
end if;
end if;
end if;
else
count <= 0;
output <= '0';
end if;
end process;
resetAdc <= output;
end behavior;
-- This lms entity is generated from MATLAB HDL CODER
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity lms is
port(
clk : in std_logic;
reset : in std_logic;
clk_enable : in std_logic;
input : in std_logic_vector(15 downto 0);
desired : in std_logic_vector(15 downto 0);
step_size : in std_logic_vector(15 downto 0);
reset_weights : in std_logic;
ce_out : out std_logic;
error_out : out std_logic_vector(15 downto 0)
);
end lms;
architecture rtl of lms is
component lmsx10_1
port(
clk : in std_logic;
reset : in std_logic;
enb : in std_logic;
data_in : in std_logic_vector(15 downto 0);
step_size : in std_logic_vector(31 downto 0);
reset_weights : in std_logic;
sum_in : in std_logic_vector(31 downto 0);
delay_out : out std_logic_vector(15 downto 0);
sum_out : out std_logic_vector(31 downto 0)
);
end component;
component lmsx10_2
port(
clk : in std_logic;
reset : in std_logic;
enb : in std_logic;
data_in : in std_logic_vector(15 downto 0);
step_size : in std_logic_vector(31 downto 0);
reset_weights : in std_logic;
sum_in : in std_logic_vector(31 downto 0);
delay_out : out std_logic_vector(15 downto 0);
sum_out : out std_logic_vector(31 downto 0)
);
end component;
component lmsx10_3
port(
clk : in std_logic;
reset : in std_logic;
enb : in std_logic;
data_in : in std_logic_vector(15 downto 0);
step_size : in std_logic_vector(31 downto 0);
reset_weights : in std_logic;
sum_in : in std_logic_vector(31 downto 0);
delay_out : out std_logic_vector(15 downto 0);
sum_out : out std_logic_vector(31 downto 0)
);
end component;
component lmsx10_4
port(
clk : in std_logic;
reset : in std_logic;
enb : in std_logic;
data_in : in std_logic_vector(15 downto 0);
step_size : in std_logic_vector(31 downto 0);
reset_weights : in std_logic;
sum_in : in std_logic_vector(31 downto 0);
delay_out : out std_logic_vector(15 downto 0);
sum_out : out std_logic_vector(31 downto 0)
);
end component;
for all : lmsx10_1
use entity work.lmsx10_1(rtl);
for all : lmsx10_2
use entity work.lmsx10_2(rtl);
for all : lmsx10_3
use entity work.lmsx10_3(rtl);
for all : lmsx10_4
use entity work.lmsx10_4(rtl);
signal enb : std_logic;
signal enb_1_1_1 : std_logic;
signal desired_signed : signed(15 downto 0);
signal desired_reg_out1 : signed(15 downto 0);
signal input_signed : signed(15 downto 0);
signal input_reg_out1 : signed(15 downto 0);
signal input_reg_out1_1 : std_logic_vector(15 downto 0);
signal step_size_signed : signed(15 downto 0);
signal sum_out1 : signed(15 downto 0);
signal product_out1 : signed(31 downto 0);
signal mul_temp : signed(31 downto 0);
signal product_out1_1 : std_logic_vector(31 downto 0);
signal constant_out1 : signed(31 downto 0);
signal constant_out1_1 : std_logic_vector(31 downto 0);
signal lmsx10_1_out1 : std_logic_vector(15 downto 0);
signal lmsx10_1_out2 : std_logic_vector(31 downto 0);
signal product_out1_2 : std_logic_vector(31 downto 0);
signal lmsx10_2_out1 : std_logic_vector(15 downto 0);
signal lmsx10_2_out2 : std_logic_vector(31 downto 0);
signal product_out1_3 : std_logic_vector(31 downto 0);
signal lmsx10_3_out1 : std_logic_vector(15 downto 0);
signal lmsx10_3_out2 : std_logic_vector(31 downto 0);
signal product_out1_4 : std_logic_vector(31 downto 0);
signal lmsx10_4_out1 : std_logic_vector(15 downto 0);
signal lmsx10_4_out2 : std_logic_vector(31 downto 0);
signal lmsx10_4_out2_signed : signed(31 downto 0);
signal sub_cast : signed(16 downto 0);
signal sub_cast_1 : signed(15 downto 0);
signal sub_cast_2 : signed(16 downto 0);
signal sub_temp : signed(16 downto 0);
signal error_out_reg_out1 : signed(15 downto 0);
signal lmsx10_4_out1_signed : signed(15 downto 0);
begin
u_lmsx10_1 : lmsx10_1
port map
(
clk => clk,
reset => reset,
enb => enb,
data_in => input_reg_out1_1,
step_size => product_out1_1,
reset_weights => reset_weights,
sum_in => constant_out1_1,
delay_out => lmsx10_1_out1,
sum_out => lmsx10_1_out2
);
u_lmsx10_2 : lmsx10_2
port map
(
clk => clk,
reset => reset,
enb => enb,
data_in => lmsx10_1_out1,
step_size => product_out1_2,
reset_weights => reset_weights,
sum_in => lmsx10_1_out2,
delay_out => lmsx10_2_out1,
sum_out => lmsx10_2_out2
);
u_lmsx10_3 : lmsx10_3
port map
(
clk => clk,
reset => reset,
enb => enb,
data_in => lmsx10_2_out1,
step_size => product_out1_3,
reset_weights => reset_weights,
sum_in => lmsx10_2_out2,
delay_out => lmsx10_3_out1,
sum_out => lmsx10_3_out2
);
u_lmsx10_4 : lmsx10_4
port map
(
clk => clk,
reset => reset,
enb => enb,
data_in => lmsx10_3_out1,
step_size => product_out1_4,
reset_weights => reset_weights,
sum_in => lmsx10_3_out2,
delay_out => lmsx10_4_out1,
sum_out => lmsx10_4_out2
);
enb_1_1_1 <= clk_enable;
ce_out <= enb_1_1_1;
desired_signed <= signed(desired);
process (clk, reset)
begin
if (reset = '1') then
desired_reg_out1 <= to_signed(0, 16);
elsif clk'event and clk = '1' then
if (enb = '1') then
desired_reg_out1 <= desired_signed;
end if;
end if;
end process;
enb <= clk_enable;
input_signed <= signed(input);
process (clk, reset)
begin
if reset = '1' then
input_reg_out1 <= to_signed(0, 16);
elsif clk'event and clk = '1' then
if (enb = '1') then
input_reg_out1 <= input_signed;
end if;
end if;
end process;
input_reg_out1_1 <= std_logic_vector(input_reg_out1);
step_size_signed <= signed(step_size);
mul_temp <= step_size_signed * sum_out1;
product_out1 <= resize(mul_temp(31 downto 8), 32) + ("0" & mul_temp(7));
product_out1_1 <= std_logic_vector(product_out1);
constant_out1 <= to_signed(0, 32);
constant_out1_1 <= std_logic_vector(constant_out1);
product_out1_2 <= std_logic_vector(product_out1);
product_out1_3 <= std_logic_vector(product_out1);
product_out1_4 <= std_logic_vector(product_out1);
lmsx10_4_out2_signed <= signed(lmsx10_4_out2);
sub_cast <= resize(desired_reg_out1, 17);
sub_cast_1 <= "0111111111111111" when ((lmsx10_4_out2_signed(31) = '0') and (lmsx10_4_out2_signed(30 downto 22) /= "000000000")) or ((lmsx10_4_out2_signed(31) = '0') and (lmsx10_4_out2_signed(22 downto 7) = "0111111111111111")) else
"1000000000000000" when (lmsx10_4_out2_signed(31) = '1') and (lmsx10_4_out2_signed(30 downto 22) /= "111111111") else
lmsx10_4_out2_signed(22 downto 7) + ("0" & lmsx10_4_out2_signed(6));
sub_cast_2 <= resize(sub_cast_1, 17);
sub_temp <= sub_cast - sub_cast_2;
sum_out1 <= "0111111111111111" when (sub_temp(16) = '0') and (sub_temp(15) /= '0') else
"1000000000000000" when (sub_temp(16) = '1') and (sub_temp(15) /= '1') else
sub_temp(15 downto 0);
process (clk, reset)
begin
if (reset = '1') then
error_out_reg_out1 <= to_signed(0, 16);
elsif clk'event and clk = '1' then
if (enb = '1') then
error_out_reg_out1 <= sum_out1;
end if;
end if;
end process;
error_out <= std_logic_vector(error_out_reg_out1);
lmsx10_4_out1_signed <= signed(lmsx10_4_out1);
end rtl;
-- megafunction wizard: %ALTPLL%
-- GENERATION: STANDARD
-- VERSION: WM1.0
-- MODULE: altpll
-- ============================================================
-- File Name: clockBuffer.vhd
-- Megafunction Name(s):
-- altpll
--
-- Simulation Library Files(s):
-- altera_mf
-- ============================================================
-- ************************************************************
-- THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
--
-- 10.0 Build 218 06/27/2010 SJ Web Edition
-- ************************************************************
--Copyright (C) 1991-2010 Altera Corporation
--Your use of Altera Corporation's design tools, logic functions
--and other software and tools, and its AMPP partner logic
--functions, and any output files from any of the foregoing
--(including device programming or simulation files), and any
--associated documentation or information are expressly subject
--to the terms and conditions of the Altera Program License
--Subscription Agreement, Altera MegaCore Function License
--Agreement, or other applicable license agreement, including,
--without limitation, that your use is for the sole purpose of
--programming logic devices manufactured by Altera and sold by
--Altera or its authorized distributors. Please refer to the
--applicable agreement for further details.
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera_mf;
USE altera_mf.all;
ENTITY clockBuffer IS
PORT
(
areset : IN STD_LOGIC := '0';
inclk0 : IN STD_LOGIC := '0';
c0 : OUT STD_LOGIC
);
END clockBuffer;
ARCHITECTURE SYN OF clockbuffer IS
SIGNAL sub_wire0 : STD_LOGIC_VECTOR (5 DOWNTO 0);
SIGNAL sub_wire1 : STD_LOGIC ;
SIGNAL sub_wire2 : STD_LOGIC ;
SIGNAL sub_wire3 : STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL sub_wire4_bv : BIT_VECTOR (0 DOWNTO 0);
SIGNAL sub_wire4 : STD_LOGIC_VECTOR (0 DOWNTO 0);
COMPONENT altpll
GENERIC (
clk0_divide_by : NATURAL;
clk0_duty_cycle : NATURAL;
clk0_multiply_by : NATURAL;
clk0_phase_shift : STRING;
compensate_clock : STRING;
inclk0_input_frequency : NATURAL;
intended_device_family : STRING;
lpm_hint : STRING;
lpm_type : STRING;
operation_mode : STRING;
port_activeclock : STRING;
port_areset : STRING;
port_clkbad0 : STRING;
port_clkbad1 : STRING;
port_clkloss : STRING;
port_clkswitch : STRING;
port_configupdate : STRING;
port_fbin : STRING;
port_inclk0 : STRING;
port_inclk1 : STRING;
port_locked : STRING;
port_pfdena : STRING;
port_phasecounterselect : STRING;
port_phasedone : STRING;
port_phasestep : STRING;
port_phaseupdown : STRING;
port_pllena : STRING;
port_scanaclr : STRING;
port_scanclk : STRING;
port_scanclkena : STRING;
port_scandata : STRING;
port_scandataout : STRING;
port_scandone : STRING;
port_scanread : STRING;
port_scanwrite : STRING;
port_clk0 : STRING;
port_clk1 : STRING;
port_clk2 : STRING;
port_clk3 : STRING;
port_clk4 : STRING;
port_clk5 : STRING;
port_clkena0 : STRING;
port_clkena1 : STRING;
port_clkena2 : STRING;
port_clkena3 : STRING;
port_clkena4 : STRING;
port_clkena5 : STRING;
port_extclk0 : STRING;
port_extclk1 : STRING;
port_extclk2 : STRING;
port_extclk3 : STRING
);
PORT (
areset : IN STD_LOGIC ;
clk : OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
inclk : IN STD_LOGIC_VECTOR (1 DOWNTO 0)
);
END COMPONENT;
BEGIN
sub_wire4_bv(0 DOWNTO 0) <= "0";
sub_wire4 <= To_stdlogicvector(sub_wire4_bv);
sub_wire1 <= sub_wire0(0);
c0 <= sub_wire1;
sub_wire2 <= inclk0;
sub_wire3 <= sub_wire4(0 DOWNTO 0) & sub_wire2;
altpll_component : altpll
GENERIC MAP (
clk0_divide_by => 1,
clk0_duty_cycle => 50,
clk0_multiply_by => 1,
clk0_phase_shift => "0",
compensate_clock => "CLK0",
inclk0_input_frequency => 20000,
intended_device_family => "Cyclone II",
lpm_hint => "CBX_MODULE_PREFIX=clockBuffer",
lpm_type => "altpll",
operation_mode => "NORMAL",
port_activeclock => "PORT_UNUSED",
port_areset => "PORT_USED",
port_clkbad0 => "PORT_UNUSED",
port_clkbad1 => "PORT_UNUSED",
port_clkloss => "PORT_UNUSED",
port_clkswitch => "PORT_UNUSED",
port_configupdate => "PORT_UNUSED",
port_fbin => "PORT_UNUSED",
port_inclk0 => "PORT_USED",
port_inclk1 => "PORT_UNUSED",
port_locked => "PORT_UNUSED",
port_pfdena => "PORT_UNUSED",
port_phasecounterselect => "PORT_UNUSED",
port_phasedone => "PORT_UNUSED",
port_phasestep => "PORT_UNUSED",
port_phaseupdown => "PORT_UNUSED",
port_pllena => "PORT_UNUSED",
port_scanaclr => "PORT_UNUSED",
port_scanclk => "PORT_UNUSED",
port_scanclkena => "PORT_UNUSED",
port_scandata => "PORT_UNUSED",
port_scandataout => "PORT_UNUSED",
port_scandone => "PORT_UNUSED",
port_scanread => "PORT_UNUSED",
port_scanwrite => "PORT_UNUSED",
port_clk0 => "PORT_USED",
port_clk1 => "PORT_UNUSED",
port_clk2 => "PORT_UNUSED",
port_clk3 => "PORT_UNUSED",
port_clk4 => "PORT_UNUSED",
port_clk5 => "PORT_UNUSED",
port_clkena0 => "PORT_UNUSED",
port_clkena1 => "PORT_UNUSED",
port_clkena2 => "PORT_UNUSED",
port_clkena3 => "PORT_UNUSED",
port_clkena4 => "PORT_UNUSED",
port_clkena5 => "PORT_UNUSED",
port_extclk0 => "PORT_UNUSED",
port_extclk1 => "PORT_UNUSED",
port_extclk2 => "PORT_UNUSED",
port_extclk3 => "PORT_UNUSED"
)
PORT MAP (
areset => areset,
inclk => sub_wire3,
clk => sub_wire0
);
END SYN;
library ieee;
use ieee.std_logic_1164.all;
entity bclk_counter is
port(
reset: in std_logic;
mclk: in std_logic;
bclk: out std_logic
);
end bclk_counter;
architecture behavior of bclk_counter is
signal count: integer range 0 to 5 := 0;
signal output: std_logic := '0';
begin
process(reset, mclk)
begin
if reset = '1' then
count <= 0;
elsif rising_edge(mclk) then
if count < 5 then
count <= count + 1;
else
output <= not output;
count <= 0;
end if;
end if;
end process;
bclk <= output;
end behavior;
library ieee;
use ieee.std_logic_1164.all;
entity LRchannelCounter is
port(
reset: in std_logic;
bclk: in std_logic;
LRchannel: out std_logic
);
end LRchannelCounter;
architecture behavior of LRchannelCounter is
signal count: integer range 0 to 15 := 0;
signal output: std_logic := '1';
begin
process(reset, bclk)
begin
if reset = '1' then
output <= '1';
count <= 0;
elsif falling_edge(bclk) then
if count < 15 then
count <= count + 1;
else
output <= not output;
count <= 0;
end if;
end if;
end process;
LRchannel <= output;
end behavior;
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera_mf;
USE altera_mf.all;
ENTITY audioPLLClock IS
PORT
(
areset : IN STD_LOGIC := '0';
inclk0 : IN STD_LOGIC := '0';
c0 : OUT STD_LOGIC
);
END audioPLLClock;
ARCHITECTURE SYN OF audiopllclock IS
SIGNAL sub_wire0 : STD_LOGIC_VECTOR (5 DOWNTO 0);
SIGNAL sub_wire1 : STD_LOGIC ;
SIGNAL sub_wire2 : STD_LOGIC ;
SIGNAL sub_wire3 : STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL sub_wire4_bv : BIT_VECTOR (0 DOWNTO 0);
SIGNAL sub_wire4 : STD_LOGIC_VECTOR (0 DOWNTO 0);
COMPONENT altpll
GENERIC (
clk0_divide_by : NATURAL;
clk0_duty_cycle : NATURAL;
clk0_multiply_by : NATURAL;
clk0_phase_shift : STRING;
compensate_clock : STRING;
inclk0_input_frequency : NATURAL;
intended_device_family : STRING;
lpm_hint : STRING;
lpm_type : STRING;
operation_mode : STRING;
port_activeclock : STRING;
port_areset : STRING;
port_clkbad0 : STRING;
port_clkbad1 : STRING;
port_clkloss : STRING;
port_clkswitch : STRING;
port_configupdate : STRING;
port_fbin : STRING;
port_inclk0 : STRING;
port_inclk1 : STRING;
port_locked : STRING;
port_pfdena : STRING;
port_phasecounterselect : STRING;
port_phasedone : STRING;
port_phasestep : STRING;
port_phaseupdown : STRING;
port_pllena : STRING;
port_scanaclr : STRING;
port_scanclk : STRING;
port_scanclkena : STRING;
port_scandata : STRING;
port_scandataout : STRING;
port_scandone : STRING;
port_scanread : STRING;
port_scanwrite : STRING;
port_clk0 : STRING;
port_clk1 : STRING;
port_clk2 : STRING;
port_clk3 : STRING;
port_clk4 : STRING;
port_clk5 : STRING;
port_clkena0 : STRING;
port_clkena1 : STRING;
port_clkena2 : STRING;
port_clkena3 : STRING;
port_clkena4 : STRING;
port_clkena5 : STRING;
port_extclk0 : STRING;
port_extclk1 : STRING;
port_extclk2 : STRING;
port_extclk3 : STRING
);
PORT (
areset : IN STD_LOGIC ;
clk : OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
inclk : IN STD_LOGIC_VECTOR (1 DOWNTO 0)
);
END COMPONENT;
BEGIN
sub_wire4_bv(0 DOWNTO 0) <= "0";
sub_wire4 <= To_stdlogicvector(sub_wire4_bv);
sub_wire1 <= sub_wire0(0);
c0 <= sub_wire1;
sub_wire2 <= inclk0;
sub_wire3 <= sub_wire4(0 DOWNTO 0) & sub_wire2;
altpll_component : altpll
GENERIC MAP (
clk0_divide_by => 135,
clk0_duty_cycle => 50,
clk0_multiply_by => 92,
clk0_phase_shift => "0",
compensate_clock => "CLK0",
inclk0_input_frequency => 37037,
intended_device_family => "Cyclone II",
lpm_hint => "CBX_MODULE_PREFIX=audioPLLClock",
lpm_type => "altpll",
operation_mode => "NORMAL",
port_activeclock => "PORT_UNUSED",
port_areset => "PORT_USED",
port_clkbad0 => "PORT_UNUSED",
port_clkbad1 => "PORT_UNUSED",
port_clkloss => "PORT_UNUSED",
port_clkswitch => "PORT_UNUSED",
port_configupdate => "PORT_UNUSED",
port_fbin => "PORT_UNUSED",
port_inclk0 => "PORT_USED",
port_inclk1 => "PORT_UNUSED",
port_locked => "PORT_UNUSED",
port_pfdena => "PORT_UNUSED",
port_phasecounterselect => "PORT_UNUSED",
port_phasedone => "PORT_UNUSED",
port_phasestep => "PORT_UNUSED",
port_phaseupdown => "PORT_UNUSED",
port_pllena => "PORT_UNUSED",
port_scanaclr => "PORT_UNUSED",
port_scanclk => "PORT_UNUSED",
port_scanclkena => "PORT_UNUSED",
port_scandata => "PORT_UNUSED",
port_scandataout => "PORT_UNUSED",
port_scandone => "PORT_UNUSED",
port_scanread => "PORT_UNUSED",
port_scanwrite => "PORT_UNUSED",
port_clk0 => "PORT_USED",
port_clk1 => "PORT_UNUSED",
port_clk2 => "PORT_UNUSED",
port_clk3 => "PORT_UNUSED",
port_clk4 => "PORT_UNUSED",
port_clk5 => "PORT_UNUSED",
port_clkena0 => "PORT_UNUSED",
port_clkena1 => "PORT_UNUSED",
port_clkena2 => "PORT_UNUSED",
port_clkena3 => "PORT_UNUSED",
port_clkena4 => "PORT_UNUSED",
port_clkena5 => "PORT_UNUSED",
port_extclk0 => "PORT_UNUSED",
port_extclk1 => "PORT_UNUSED",
port_extclk2 => "PORT_UNUSED",
port_extclk3 => "PORT_UNUSED"
)
PORT MAP (
areset => areset,
inclk => sub_wire3,
clk => sub_wire0